
Supporting variability exploration and resolution
during model migration

Davide Di Ruscio1, Juergen Etzlstorfer2, Ludovico Iovino3,
Alfonso Pierantonio1, and Wieland Schwinger2

1 Department of Information Engineering, Computer Science and Mathematics
Università degli Studi dell’Aquila - L’Aquila (Italy)

name.surname@univaq.it
2 Department of Cooperative Information Systems
Johannes Kepler University Linz - Linz (Austria)

name.surname@jku.at
3 Gran Sasso Science Institute - L’Aquila (Italy)

ludovico.iovino@gssi.infn.it

Abstract. In Model-Driven Engineering (MDE) metamodels are piv-
otal entities that underpin the definition of models. Similarly to any
software artifact, metamodels evolve over time due to evolutionary pres-
sure. However, whenever a metamodel is modified, related models may
become invalid and adaptations are required to restore their validity.
Generally, when adapting a model in response to metamodel changes,
more than one migration strategy is possible. Unfortunately, inspecting
all of them, which greatly overlap one with another, can be prone to er-
rors. In this paper, we present an approach supporting the identification
of variability during model migration and selection of migration alter-
natives by generating an intensional and thus concise representation of
all migration alternatives by including also an explicit visualization of
conflicting solutions.

1 Introduction

In Model-Driven Engineering [24] (MDE) metamodels are often considered a
pivotal concept used for formalizing and describing application domains. A wide
range of artifacts, tools and applications are defined upon one or more meta-
models that altogether form a modeling ecosystem [6]. Generic modeling plat-
forms (e.g., ADOxx4, EMF5, and Metaedit6) enable the development of full-
fledged modeling environments that are specifically tailored around organiza-
tion needs [8,14]. Similarly to any other software artifact, metamodels are prone
to evolution during their routinely use, to cope with improvements, extensions,
and corrections [18]. However, any change to a metamodel can endanger the in-
tegrity and consistency of the modeling ecosystem as models, transformations, or

4 http://www.adoxx.org
5 http://eclipse.org/modeling/emf/
6 http://www.metacase.com/products.html

2

even editors might become invalid [7]. The metamodel co-evolution (or coupled
evolution) problem concerns the process of recovering the relationship between
evolving metamodels and the dependent artifacts in the modeling ecosystem [7].
In this paper, we focus on the model co-evolution problem, i.e., on the pro-
cess of migrating a model to restore the conformance relation between evolving
metamodels and those models affected by the metamodel changes.

Over the last decade, numerous approaches for co-evolution of metamodels
and models have been proposed. Most of them can be distinguished by falling into
the groups of inductive and prescriptive ones: the former ones (e.g., [4,12]) auto-
matically derive a model migration procedure from the metamodel differences,
while in the course of the latter ones models are programmatically migrated by
means of predefined procedures (e.g., [13,21,29]). An aspect that has been largely
neglected so far is the following: when migrating a model in response to a meta-
model change there might be multiple alternatives to restore its conformance.
For instance, if the multiplicity of an association in a metamodel is decreased,
there are many ways of selecting the exceeding associations to be removed from
the instance models. Identifying the right migration alternative is a challenging
task as it should consider also aspects that go beyond the mere conformance
recovering, such as information erosion [25] and reducing the number of model
changes. Recently, an approach has been proposed to mitigate such difficulties
by generating all possible migrations at once [25]. Then, the responsibility of
identifying the right model migration is shifted from the implementer of the mi-
gration program to the modeler, who can then inspect the solution space and
identify the most adequate solution. Unfortunately, already little changes in the
metamodel usually give place to a multitude of possible model migrations that
are difficult to inspect as they greatly overlap one with another.

In this paper, we present an approach to alleviate the consequences of dealing
with the multitude of model migrations that can restore model conformance.
The purpose of the approach is to help the modeler in finding the co-evolution
for models by supporting the modeler with a proper visualization of potential
conflicting solutions. Instead of extensionally [20] generating all migrated model
as done in [25], an intensional representation of them is given. In essence, the
approach permits to represent different solutions as a model with variability that
indicates which parts of the solution are different for each migration alternative
and is able to indicate if there are conflicts between solutions. The overall solution
space is represented by a feature model [1] to better navigate alternatives and
identify the wanted migration alternative. In addition, traceability between the
individual metamodel changes and the corresponding migration alternatives is
also provided in order to record modeler decisions and avoid to deal with already
resolved variability.

Outline. In Sect. 2 a motivating example is given to illustrate how migration
strategies can proliferate. Sect. 3 introduces the approach by presenting the vari-
ability metamodel for the intensional representation of the different solutions and
illustrates it on the motivating example. The approach is critically discussed in

3

(a) initial version (b) evolved version

Fig. 1: The Simple Workplace Metamodel (SWMM)

Sect. 4. In Sect. 5 related work is considered and, Sect. 6 draws some conclusions
and outlines future plans.

2 Motivating Example

In order to satisfy unforeseen requirements or to better represent the considered
application domain, metamodels can be subject to modifications as for instance
in the case of the Simple Workplace MetaModel (SWMM) shown in Fig. 1.a7.
In particular, let us suppose that a number of changes have been performed on
the SWMM metamodel leading to the evolved version shown in Fig. 1.b. More
specifically, the performed changes (or refactorings) shall be the following:

R1. Introduce subclasses: the metaclasses Employee and Intern have been added
as subtype of Person that becomes abstract.

R2. Push down attribute: the attribute salary has been pushed down in the
hierarchy, from Person to Employee.

R3. Add mandatory attribute: the mandatory attribute temporary has been added
to the metaclass Employee.

R4. Restrict reference cardinality : the multiplicity of reference assignedTo has
been restricted from [0..2] to [0..1].

R5. Flatten hierarchy : the metaclasses Company and University have been re-
moved, flattening the hierarchy of Workplace.

A simple workplace model conforming to the initial version of SWMM is
shown in Fig. 2. The model specifies an instance of the metaclass Person named
John: he works at the University of L’Aquila and is employed in two projects,
namely LearnPad and MDEForge. Such a model is no longer conforming to the
newer version of the SWMM metamodel, therefore it has to be migrated in order
to re-establish the lost conformance relationship. In particular, the following
elements violate the conformance relationship:

7 For the sake of clarity, abstract classes are depicted in gray.

4

– John:Person and Adele:Person cannot be instances of the metaclass Person,
which is now abstract; in addition, such instances contain the reference as-
signedTo and the attribute salary that have been removed from the Person
metaclass;

– the Univaq:University element cannot be in the model because the metaclass
University has been flattened into Workplace;

– the number of assigned projects to John:Person is higher than 1 which is the
new maximal number of projects that can be assigned to Person.

MagicDraw, 1-1 /Users/ludovicoiovino/Documents/workspace/magicdraw/variability.mdzip obkectmodel Oct 21, 2015 10:43:02 AM

Object Diagram obkectmodelData []

assignedTo = MdeForge,
 LearnPad
name = "John"
salary = 1000
works = Univaq

John : Person
name = "University
of L'Aquila"

Univaq : University

name = "MDEForge"

MdeForge : Project

name = "LearnPad"

LearnPad : Project name = "Adele"
salary = 2000
works = Univaq

Adele : Person

Fig. 2: A simple workplace model

In general, various migration pro-
cedures to recover the conformance are
possible, each providing a different so-
lution. Thus, it is of utmost impor-
tance to inspect the different alter-
natives for detecting the one, which
fits modeler’s needs best. However, be-
cause the alternatives largely overlap
each other and might present conflicts
among them, the procedure can be
tedious and prone to errors if exe-
cuted without (semi) automated sup-
port. For instance, because of the SWMM metamodel refactoring the simple
workplace model in Fig. 2 can be migrated by means of several model migrations
as reported in Table 1 and explained in the following8:

R1. Introduce subclasses: this metamodel change involving the metaclass Person
can be resolved by means of any of the following alternatives:

– R1a1: all instances of Person are removed;
– R1a2, R1a3: all instances of the abstract superclass Person are re-typed into

either Employee (R1a2) or Intern (R1a3);
– R1a4: a non-empty set of instances is re-typed to Employee while another

non-empty set of instances is re-typed to Intern; the decision criteria about
which instances are retyped to one or the other type has to be provided by
the user in form of, e.g., OCL expressions.

R2. Push down attribute: this change, which pushed down the attribute salary
from Person to Employee, can be resolved by operating one of the following model
migrations:

– R2a1: retain the value of the pushed attribute;
– R2a2: delete the value of the pushed attribute;

R3. Add mandatory attribute: the addition of the mandatory attribute temporary
can be resolved by setting its value either to true (R3a1), or to false (R3a2).
This should be decided by the user.

8 Please note that each migration alternative is identified by a term like R1a1 where
a1 is one of the possible migration alternative related to the metamodel change R1

5

Table 1: Possible model migration alternatives for the motivating example

Metamodel change Possible migration alternatives

R1. Introduce subclasses

R1a1. Remove the existing instances of type Person

R1a2. Re-type the existing instances from Person to Em-
ployee

R1a3. Re-type the existing instances from Person to Intern

R1a4. Re-type the existing instances from Person to Em-
ployee or Intern with different (non-empty) combinations

R2. Push down attribute

R2a1. Maintain the attribute value of salary in the re-typed
instance

R2a2. Remove the attribute value of salary

R3. Add mandatory
attribute

R3a1. Set the attribute value of Employee.temporary to true

R3a2. Set the attribute value of Employee.temporary to false

R4. Restrict reference
cardinality

R4a1. Remove one of link to the project assigned to a Per-
son9

R4a2. Remove all the links of project related to a Person

R4a3. Re-assign one of the project to other persons9

R4a4. Re-assign all the project to other persons9

R5. Flatten hierarchy
R5a1. Re-type all the instance with the corresponding flat-
tened subclasses with the supertype

R5a2. Remove all instances of Workplace

R4. Restrict reference cardinality: this change operated on the reference as-
signedTo can be resolved applying one of the following migration alternatives:

– R4a1: unassign one of the two Projects from a Person;
– R4a2: unassign all Projects to allow for a complete reassignment;
– R4a3, R4a4: reassign one Project instance (R4a3) or all instances of Project

(R4a4) to another instance of Person.

R5. Flatten hierarchy: this modification, which affected Workplace, Company,
and University, can be resolved by re-typing all the instances of University or
Company to the superclass Workplace (R5a1) or by deleting all of them (R5a2).

A migration solution consists of a combination of selected migration alter-
natives, one for each metamodel refactoring, which are not in conflict to each
other. However, alternatives can be combined in different manners by exponen-
tially increasing the number of migration solutions and thus the complexity of
the problem. For instance, by considering the 5 changes operated on the initial
SWMM metamodel of the previous example, the total number of possible mi-
gration solutions for the sample workplace model are 128 (= 4× 2× 2× 4× 2),
although this might be an over-approximation because conflicts might occur
between migration alternatives as discussed later on the paper. However, if user-
specified decision criteria are allowed, the number might be even higher.

9 The selection criteria can be decided by the generation process, e.g. first, last, random

6

3 Approach

In this section, we present an approach to represent, explore, and select migration
alternatives in response to metamodel changes. The approach allows to inten-
tionally represent multiple solutions for the model migration problem at hand.
In particular, instead of extensionally represent all the possible solutions as typ-
ically done by existing techniques (e.g., [25]), a single model with variability is
employed to precisely denote which parts of the solution are different for each
migration alternative. The proposed approach also permits to highlight aspects
that are not evident with classical approaches, such as conflicting alternatives.

Figure 3 shows the main artifacts and activities of the proposed approach.
The main concepts are represented by the Variability Weaving Metamodel (WMM),
which employes model weaving [2] (see mWMM) by linking different models to
represent all possible migration solutions that can be alternatively applied on
the initial model mMM in order to obtain models conforming to the evolved
metamodel (MM’). In particular, for each metamodel change the weaving model
represents corresponding migration alternatives for mMM. Some of those alter-
natives might be in conflict with others, e.g., the deletion of an element is in
conflict with other operations consuming it. In order to make the visualization
of alternatives and their conflicts easier to be analyzed, a model transformation
is applied on the source model mWMM to generate a target feature model [1]. The
generated feature model can be inspected by the user in order to chose a valid
combination of migration alternatives, to finally obtain a model m′ conforming
to MM’.

In the remaining of the section all the parts of the approach shown in Fig. 3
are described.

3.1 Variability metamodel for representing different migration
solutions

The variability metamodel WMM previously mentioned is shown in Fig. 4 and
has been constructed by building upon our previous work on difference repre-
sentation for metamodels [3], but shifting the concepts from the M2 level of

Legend: manually specified by modeler

MM

mMM

MM'

m'MM’mWMM
weaving links

Variability Weaving
Metamodel

(WMM)

Feature
model

conformsTo

evolves

conformsToconformsTo

WMM2FM
Configuration and
Execution of the
model migration

weaving links

Fig. 3: Proposed Approach

7

the OMG modeling stack to the M1 level [16]. Since we employ the Eclipse
technology stack, Ecore serves as meta-metamodel of the proposed variability
metamodel.

The metamodel consists of the root metaclass VariabilityModel that serves as
a container for all migration Solutions, each of which is performed on the affected
model to restore its conformance with respect to the newer metamodel version. In
order to express all the possible migration strategies, each Solution consists of one
or more disjunct Alternatives. Each alternative (as those illustrated in Table 1)
is represented in terms of effects on the model to be migrated. To this end,
the DiffInstance and DiffFeature metaclasses have been introduced: the former
identifies the model element affected by the metamodel refactoring, whereas
the latter identifies the corresponding structural features. The metamodel is
capable of describing all added, deleted, and changed metamodel instances along
with their added, deleted, and changed features. Additionally, instances that
remain the same, i.e., migration is not needed, can be specified (cf. CopyInstance).
Thus, all possible migration alternatives can be represented. Please note that
applicationElement is the reference to an element subject to change in m. The
properties name and featureName, value, newValue represent the changed/new
values in changed/new instances and features, respectively.

As already mentioned above, migration alternatives might also be in conflict
with each other. For example, considering a deletion of an element as a possible
alternative, this alternative is in conflict with all other alternatives that still
depend on the existence of this element. As shown in Fig. 4, an Alternative
might be in conflict with more than one other migration alternatives (see the
reference conflictsWith). In the following, we present a way how users can deal

EClass
from MM'

Affected Instance

Fig. 4: Variability Weaving Metamodel (WMM)

8

Fig. 5: Sample weaving model represented by means of Epsilon ModeLink

with conflicts when selecting migration alternatives. This enables an explicit
management of conflicts in subsequent stages of the migration process.

3.2 Variability model as weaving model

Employing the approach to our example, all migration alternatives shown in
Table 1 have been represented by means of the weaving model shown in Fig. 5
and conforming to the variability metamodel in Fig. 4. The model mWMM has
been manually specified by the user by exploiting the Eclipse Epsilon’s model
weaving facilities ModeLink10.

On the left-hand side of Fig. 5 the sample workplace model conforming to
the initial version of SWMM is shown, whereas the right-hand side of the figure
shows the evolved version of SWMM. In the middle, all the weaving elements rep-
resenting the possible migration alternatives of the sample workplace model are

10 https://www.eclipse.org/epsilon/doc/modelink/

9

shown. In particular, the weaving model consists of links (annotated by dashed
lines) relating model elements that have to be migrated (see the left-hand side of
the figure), with metaclasses in the newer metamodel (see the right-hand side of
the figure). Weaving links are organized in solutions, each consisting of migration
alternatives. For instance, the solution for the metamodel change R1 - Introduce
subclasses applied to the metaclass Person consists of four alternatives (R1a1 –
R1a4), each representing the corresponding model migration. In particular,

– the alternative R1a1 contains a Delete Instance that refers to John and Adele,
meaning that this choice deletes both instances.

– the alternative R1a3 links the instances John and Adele to the class Intern
of the new SWMM via a Changed Instance element, meaning that they are
re-typed to be instances of Intern during migration.

Since not all migration alternatives might be compatible with each other,
WMM also allows to specify conflicts to declare disjunct alternatives. For in-
stance, the property view on the lower right-hand side of Fig. 5 shows the
specified conflicts for R1a3, which is in conflict with the alternative R3a1. In
particular, R1a3 retypes all the instances of Person to Interns, whereas in R3a1
the attribute temporary, which is not existing in the Intern, is set to true. Con-
flicts are annotated in Fig. 5 by means of (vertical) dotted lines connecting the
weaving model elements.

Please note that for the sake of clarity not all weaving links and conflicts are
shown in Fig. 5, nevertheless all weaving links and conflicts regarding the R1
alternatives are shown.

3.3 Variability model as feature model

Feature models [1] are a compact representation of different configurations for a
system, e.g., software product lines. In our approach, we employ feature models
to provide a suitable representation of all Solutions along with their migration
Alternatives, to support the user in identifying the right migration alternative.
Therefore, Solutions are represented as mandatory features (since for each change
a solution has to be chosen), while migration Alternatives are disjunct subfeatures
of Solutions, thus the user can only decide for one concrete alternative at a
time. However, since alternatives might be in conflict among them, we exploit
constraints as part of the feature model to define these conflicts.

For instance, in order to provide a convenient representation for the solution
and alternatives illustrated in Fig. 5, the feature model in Fig. 6 can be used.
It can be automatically generated from the weaving model using the model
transformation shown in Listing 1.1. The generated feature model consists of
mandatory elements R1–R5 representing the different solutions that have to be
considered to migrate the simple workplace model. Each of them consists of
several disjunct alternatives that represent the concrete migration actions to
be undertaken. If conflicts have been specified, they are denoted in the feature
model by means of constraints, e.g., by R1a1⇒ ¬R2a1∧¬R3a1∧¬R4a2, thus,

10

Dead feature Dead features

Constraints Constraints Constraints derived
from conflicts

Fig. 6: Feature model related to the running example

excluding specific alternative combinations. Interestingly, the presence of con-
straints in mandatory alternatives might reveal “dead features”, which means
that in order to apply all solutions, some choices might not be valid. In the ex-
ample, R1a1 and R1a4 are detected as dead features, since they either delete the
instance John or retype it to Intern, thereby hindering all subsequent migration
actions that rely on the instance itself or features of Employee. Besides dead fea-
tures, all other conflicts lead to constraints that might restrict some solutions.
For example, the choice of R1a3 will prevent the modeler from choosing also
R3a1, R4a2, and R4a3.

3.4 The WMM2FM transformation

Feature models like the one in Fig. 6 can be automatically generated from a
weaving model by means of a model transformation. Listing 1.1 provides such a
transformation, which has been developed with the Epsilon Generation Language
(EGL) [22]. Please note that this transformation is actually a model-to-text
transformation, since the employed feature model representation is technically
based on XML, thus, XML code is produced. In line 1–3 all solutions of the model
are queried, while in line 9–15 we iterate over these solutions and create a feature
for each solution containing all of its alternatives as possible subfeatures (line 11–
13). Thus, alternatives belonging to the same Solution are disjunct by default. In
order to automatically derive conflicts between migration alternatives belonging
to different Solutions, in line 20–36 we create a rule for each migration that is in
conflict with another migration alternative. More specifically, a conflict between
Alternatives implies that those alternatives are not compatible to each other (line
27–29). The generated constraints correspond to the following expression, which
states that selection of a implies that a1, . . . , an are not valid anymore, i.e., they
are in conflict with a, more formally:

a⇒ ¬a1 ∧ ¬a2 ∧ . . . ∧ ¬an

Once the feature model is generated, it can be loaded, displayed and edited
by the FeatureIDE plugin [27] for Eclipse.

11

Listing 1.1: Fragment of the WMM2FM transformation

1 [%
2 var solutionModel := SolutionM.allInstances().at(0);
3 var allSolutions := solutionModel.solutions; %]
4 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
5 <featureModel chosenLayoutAlgorithm="1">
6 <struct>
7 <and abstract="false" mandatory="true" name="SolutionModel">
8 [%
9 for (s in allSolutions) { %]

10 <alt mandatory="true" name="[%=s.name%]">
11 [% for (a in s.alternatives) { %]
12 <feature mandatory="true" name="[%=a.name%]" />
13 [% } %]
14 </alt>
15 [% } %]
16 </and>
17 </struct>
18 <constraints>
19 [%
20 for (s in allSolutions) {
21 for (a in s.alternatives) {
22 if (a.allConflicts.size() > 0) { %]
23 <rule>
24 <imp>
25 <var>[%=a.name%]</var>
26 <conj>
27 [% for (conflict in a.allConflicts) { %]
28 <not><var>[%=conflict.name%]</var></not>
29 [% } %]
30 </conj>
31 </imp>
32 </rule>
33 [%
34 }
35 }
36 } %]
37 </constraints>
38 ...
39 </featureModel>

The feature model represents all possible configurations (i.e., migration solu-
tions) for model migration. However, in order to create one specific m′ a single
configuration in the feature model must be selected. Since configurations can
also be executed with FeatureIDE, it is possible to automatically migrate m to
m′ by attaching the needed migration actions for model migration directly to
the alternatives in the feature model.

3.5 Configuration and Execution of Model Migration

As aforementioned, the modeler has to ultimately decide on a combination of
valid options in the feature model, i.e., a configuration, to define a migration. In
this process, the user is supported by the provision of constraints that restrict the
number of valid solutions. In Fig. 7a a concrete but not yet finalized configuration
taken by the user is shown. It is highlighted in the picture that the decision for
R2 is not made yet, i.e, the modeler can still choose among the two available
configurations (empty boxes shown in green). Once the user decides for a valid
configuration (cf. Fig. 7b), this configuration can be executed. This means that
all migration actions attached to the alternatives can be applied. Please note

12

(a) Building of configura-
tion

(b) Concrete example of
configuration

(c) Execution log of the
configuration

Fig. 7: Configuration and Execution of Model Migration

that discussing the actual migration process is outside the scope of this paper,
however migration actions elaborated in our previous work [17] are adequate to
be reused in this approach. As shown in Fig. 7c an exemplary execution log is
provided to show the potential of this approach when executed.

4 Discussion

Although the approach has been validated by considering representative exam-
ples only, early feedback provides interesting elements for outlining benefits and
potential drawbacks. The idea of using feature models for representing the vari-
ous alternatives simplifies the representation of explicit and relevant knowledge
to be conveyed to the modeler. A manifest representation of alternatives, their
conflicts, and how traceability cross-links them to the metamodel refactoring is
a useful instrument for assisting the modeler in meeting her migration design
decisions. On the contrary, model migration has always been based on individ-
ual and spontaneous processes prone to errors and inconsistencies. Therefore,
shifting the responsibility of deciding which migration best fits the requirements
from the migration program implementer to the modeler is greatly beneficial if
properly supported.

To the best of our understanding, the major drawback of the approach is
represented by the manual creation of the weaving model and the conflict rep-
resentation. Although the automated generation of such artifacts is outside the
scope of this paper, both the weaving model and the conflict representation we

13

are confident that it can be obtained in an automated manner. In particular, we
plan to revise our work from [25] (in which a corrupted conformance relation-
ship is re-established by applying so-called repair actions that generate multi-
ple solutions) to generate the weaving model instead of the concrete solutions.
For identification of conflicts, starting from our work on dependent metamodel
changes [3], we intend to generate admissible scheduling of migration actions.
Both extensions are desirable and seem viable as no major technical obstacle is
evident at this stage.

5 Related Work

There has been only little research on the unified management of multiple mi-
gration strategies in the modeling community so far. Thus, in the following,
first more close approaches are compared to our approach, while in the latter
approaches from other engineering domains are discussed.

The closest work to our approach has been proposed recently in [11], in which
the authors propose a Variable Metamodel (VMM) during metamodel evolution.
This metamodel unifies the concepts of different metamodel evolutions in a way
that all models that need to be migrated conform to the VMM. In fact, a model
is not migrated but matches the VMM in each evolution of the metamodel, which
is in contrast to our approach since we provide possibilities to explore different
migration alternatives how the model can conform to the latest version of the
metamodel.

In [25] the authors introduce an approach to re-establish the conformance re-
lationship between models and metamodels by manipulating the non-conforming
model according to specific rules. Thus, multiple valid m′ are being generated
that are sorted and presented to the user according to quality criteria. However,
each solution is presented as its own model in contrast to the approach proposed
in this paper, which attempts to present variability in model migration in one
single model to better cope with overlapping solutions.

In [15] variability is tackled by the provision of multiple alternative repair
actions in order to repair a violated, i.e., non-conforming, model. However, the
user has to decide on the lower level of repair actions, while in our approach the
user decides on the level of models.

An approach which allows to define custom migration actions while still sat-
isfying quality criteria, and thus tackles variability by user involvement, has been
proposed in [19]. However, exploration of the different possibilities for migration
is not part of their work.

In [9] the consistency restoration between different UML models, e.g., class
and sequence diagrams, is addressed. To ensure consistency, an approach to
automatically generated choices to repair inconsistent UML models is proposed.
The tool lets the user explore alternative ways to fix inconsistencies in a UML
model. However, the tool is limited to generate resolutions that only involve a
change at a single location at a time.

14

The necessity of dealing with multiple alternatives arised also in other fields,
including model merging and versioning and requirement engineering. In [5] the
authors propose an approach to automatically merge different versions of a model
according to user-definable consistency constraints. In fact, in case of inconsis-
tencies the approach is able to inform the modeler about which model elements
have to be changed. However, the approach focuses on merging different model
versions into one model, while our approach is able to highlight different migra-
tion alternatives in one variability model.

Wieland et al. [30] present an approach for optimistic model versioning,
meaning that conflicts do not have to be resolved immediately but rather when
a decision can be made how to resolve them. The approach is able to accept
conflicts and resolve them later in the process, by having the conflicted model
elements annotated to reflect the modifications. However, the approach focuses
on the simultaneous editing of models and arising conflicts, in contrast to our
approach which deals with different strategies on how to migrate a model.

In [26] the authors propose an approach merge similar algebraic graph trans-
formation (AGT) rules and generate a single rule with variability. Doing so, rule
variants can be expressed in a compact manner.

In [10] partial models are introduced in order to let the designer to spec-
ify uncertain information by means of a base model enriched with annotations
and first-order logic, which highlights the need for variability also in other en-
gineering domains. In [23] the authors stress the need for uncertainty since the
requirements engineering field it is common to have uncertainty in both the con-
tent and structure of the models. However, they do not cope with uncertainty
by providing a number of different possible choices to resolve uncertainty.

In goal-oriented methodologies such as KAOS or i* [28] intentionality and
variability aspects are also treated, but they are more widely used in early phases
of a project, while the models considered in this paper are the central artifacts
in the development process.

6 Conclusion and Future Work

In this paper, an approach for representing and visualizing different solutions for
model migration in presence of metamodel changes has been proposed. Besides
the capability to represent all possible alternatives in an intensional fashion,
the approach permits the explicit representation of conflicts that easily arise in
the migration process. In particular, the different options are represented in a
weaving model between the model to migrate and the evolved version of the
metamodel. In addition, it has been shown how to transform the weaving model
into a feature diagram, a commonplace notation that can be used out-of-the-
box. Among the advantages of the approach there is the traceability between
the metamodel refactorings and the migrations alternatives, which provides a
useful way to better grasp the rationale behind the migration actions.

The presented approach suggests further developments. In particular, the
idea of automating the generation of the weaving models seems viable according

15

to our previous work [25]. The generation of conflicts is also another aspect
we intend to investigate starting from our previous work on the management
of dependent changes [3]: an opportunity to harness is given by analyzing how
dependencies among metamodel changes can give place to scheduling of model
migration actions.

References

1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,
H., Pohl, K. (eds.) Software Product Lines, LNCS, vol. 3714, pp. 7–20. Springer
(2005)

2. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the Large and
Modeling in the Small. In: Amann, U., Aksit, M., Rensink, A. (eds.) Model Driven
Architecture, LNCS, vol. 3599, pp. 33–46. Springer (2005)

3. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing dependent changes in cou-
pled evolution. In: Theory and Practice of Model Transformations, pp. 35–51.
Springer (2009)

4. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: Proc. of EDOC. pp. 222–231. IEEE (2008)

5. Dam, H.K., Egyed, A., Winikoff, M., Reder, A., Lopez-Herrejon, R.E.: Consistent
merging of model versions. Journal of Systems and Software (2015)

6. Di Ruscio, D., Iovino, L., Pierantonio, A.: Coupled evolution in Model-Driven
Engineering. IEEE Software 29(6), 78–84 (2012)

7. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary Togetherness: How to
Manage Coupled Evolution in Metamodeling Ecosystems. In: ICGT. vol. 7562, pp.
20–37. Springer (2012)

8. Di Ruscio, D., Paige, R.F., Pierantonio, A.: Guest editorial to the special issue on
success stories in model driven engineering. Science of Computer Programming 89,
69–70 (2014)

9. Egyed, A., Letier, E., Finkelstein, A.: Generating and Evaluating Choices for Fix-
ing Inconsistencies in UML Design Models. In: 23rd IEEE/ACM International
Conference on Automated Software Engineering. pp. 99–108 (Sept 2008)

10. Famelis, M., Salay, R., Chechik, M.: Partial models: Towards modeling and rea-
soning with uncertainty. In: Proc. of ICSE. pp. 573–583 (June 2012)

11. Font, J., Arcega, L., Haugen, O., Cetina, C.: Addressing Metamodel Revisions in
Model-based Software Product Lines. In: Proc. of the 2015 ACM SIGPLAN Int.
Conf. GPCE. pp. 161–170. ACM (2015)

12. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by pre-
cise detection of metamodel changes. In: Model Driven Architecture-Foundations
and Applications. pp. 34–49. Springer (2009)

13. Herrmannsdoerfer, M.: COPE A Workbench for the Coupled Evolution of Meta-
models and Models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010.
LNCS, vol. 6563, p. 286295. Springer (2011)

14. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of mde in industry. In: Proc. of the ICSE. pp. 471–480. ACM (2011)

15. Körtgen, A.T.: New Strategies to Resolve Inconsistencies between Models of De-
coupled Tools. In: 3rd Workshop on Living with Inconsistencies in Software Devel-
opment, Bd. vol. 661, pp. 21–31 (2010)

16

16. Kurtev, I., Bzivin, J., Aksit, M.: Technological spaces: An initial appraisal. In:
CoopIS, DOA’2002 Federated Conferences, Industrial track (2002)

17. Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W., Schwinger, W.,
Schönböck, J.: Consistent Co-Evolution of Models and Transformations. In: Proc.
of the 18th International Conference on Model Driven Engineering Languages and
Systems (MODELS). IEEE, Ottawa, Canada (10 2015)

18. Lientz, B.P., Swanson, E.B.: Software maintenance management. Addison-Wesley
(1980)

19. Mantz, F., Taentzer, G., Lamo, Y.: Well-formed Model Co-evolution with Cus-
tomizable Model Migration. Electronic Communications of the EASST 58 (2013)

20. Parsons, J., Wand, Y.: Using objects for systems analysis. Commun. ACM 40(12),
104–110 (1997)

21. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.: Model Migration with Epsilon
Flock. In: ICMT, LNCS, vol. 6142, pp. 184–198. Springer (2010)

22. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.: The Epsilon Generation Lan-
guage. In: Schieferdecker, I., Hartman, A. (eds.) Model Driven Architecture Foun-
dations and Applications, LNCS, vol. 5095, pp. 1–16. Springer (2008)

23. Salay, R., Chechik, M., Horkoff, J., Di Sandro, A.: Managing requirements uncer-
tainty with partial models. Requirements Engineering 18(2), 107–128 (2013)

24. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer
39(2), 25–31 (Feb 2006)

25. Schönböck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E., Schwinger, W., Wimmer,
M., Wischenbart, M.: CARE – A Constraint-Based Approach for Re-Establishing
Conformance-Relationships. In: Proc. of the APCCM (2014)

26. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plger, J.: Rule-
Merger: Automatic Construction of Variability-Based Model Transformation
Rules. In: Fundamental Approaches to Software Engineering. LNCS, vol. 9633.
Springer (2016)

27. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-
tureIDE: An extensible framework for feature-oriented software development. Sci-
ence of Computer Programming 79, 70 – 85 (2014)

28. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
Fifth IEEE International Symposium on Requirements Engineering, 2001. pp. 249–
262. IEEE (2001)

29. Wagelaar, D., Iovino, L., Di Ruscio, D., Pierantonio, A.: Translational semantics
of a co-evolution specific language with the EMF transformation virtual machine.
In: ICMT, LNCS, vol. 7303, pp. 192–207. Springer (2012)

30. Wieland, K., Langer, P., Seidl, M., Wimmer, M., Kappel, G.: Turning Conflicts into
Collaboration. Computer Supported Cooperative Work 22(2-3), 181–240 (2013)

