
Systematic Co-Evolution of OCL Expressions

Angelika Kusel1 Juergen Etzlstorfer2 Elisabeth Kapsammer1 Werner Retschitzegger1
Johannes Schoenboeck3 Wieland Schwinger1 Manuel Wimmer2

1 Johannes Kepler University Linz, Austria
[firstname].[lastname]@jku.at

2 Vienna University of Technology, Austria
[lastname]@big.tuwien.ac.at

3 University of Applied Sciences Upper Austria, Campus Hagenberg, Austria
[firstname.lastname]@fh-hagenberg.at

Abstract

Metamodels are the central artifacts in Model-Driven En-
gineering and like any other software artifact, subject to
constant change. This fact necessitates the co-evolution of
dependent artifacts such as models and transformations to
resolve induced inconsistencies. While the co-evolution
of models has been extensively studied, the co-evolution
of transformations and especially OCL expressions being
a substantial part thereof have been less examined up to
now. To fill this gap, this paper proposes resolution actions
for all atomic metamodel changes violating the syntacti-
cal correctness of OCL expressions, thus, being able to
resolve induced inconsistencies. Thereby, the resolution
actions establish a virtual view on the evolved metamodel
such that syntactical correctness is re-established. To ver-
ify the semantical correctness of the resolution actions, we
use our PaMoMo language, allowing to specify semantical
correctness requirements for model transformations. Fi-
nally, to demonstrate the applicability of our approach, a
proof-of-concept prototype on basis of ATL is provided.

1 Introduction

Model-Driven Engineering (MDE) proposes the use of
models to conduct software development on a higher level
of abstraction [2]. Thereby, model transformations play
a vital role for systematic transformations of models con-
forming to different metamodels (MMs), which describe
the syntactical constraints for models, i.e., the abstract
syntax thereof. Like any other software artifact, MMs are
subject to constant change, i.e., they evolve, caused by,
e.g, changing requirements. During evolution, the confor-
mance between the MM and the dependent artifacts may
be violated, which demands for a co-evolution of the de-
pendent artifacts to resolve induced inconsistencies.

While the automated co-evolution of models has been
subject to extensive research in the past (cf. [12] for a sur-
vey), the automated co-evolution of transformations has
been less examined so far. Although first works exists (cf.,
e. g., [6, 8, 9, 16]), especially the co-evolution of Object
Constraint Language (OCL) [25] expressions has not been
a major focus up to now, although OCL expressions make
up substantial parts of model transformations [29]. The
indispensable role of OCL stems from the fact that OCL
expressions allow to perform complex queries on the input
models, which are essential, since the results thereof are

Copyright

used in two important parts, namely in assignments, e.g.,
to produce the target model, and in steering the control
flow, e.g., in case of conditions. Consequently, they repre-
sent a significant ingredient in rule-based model transfor-
mation languages, such as ATL [14] or QVT [24].

To enable the co-evolution of OCL expressions, this
paper proposes resolution actions for all atomic MM
changes violating the syntactical correctness of OCL ex-
pressions. Thus, this paper continues the work described
in Kusel et al. [17], where we proposed a complete and
minimal set of changes, which has been systematically de-
rived from Ecore1, thereby enabling the definition of arbi-
trary evolutions of Ecore-based MMs. This set of changes
has been further analyzed with regard to its impacts on
OCL expressions, thereby dividing the set of changes into
those breaking the syntactical correctness of OCL expres-
sions and those that do not. For breaking changes reso-
lution actions are presented in this paper, establishing a
virtual view on the evolved MM simulating the old ver-
sion of the MM to the transformation definition, such that
syntactical correctness is re-established. Whenever an au-
tomatic resolution is not possible, the user may specify ap-
propriate resolution actions being supported by respective
templates. The proposed resolution actions ensure both,
syntactical correctness, which can be statically checked
by a compiler, as well as semantical correctness by pre-
serving the old version of target model as far as possible,
which we verify by dedicated properties expressed in our
“Pattern-based Modeling Language for Model Transfor-
mations” (PaMoMo) [10]. Finally, to provide a proof-of-
concept, the proposed resolution actions are implemented
by means of Atlas Transformation Language (ATL) [14]
helpers, demonstrated on basis of a running example.

The paper is structured as follows: Section 2 briefly
introduces model transformations and the role of OCL,
while in Section 3 MM evolution and its impacts on OCL
are discussed. Resolution actions for breaking changes are
proposed in Section 4, while the formalism to check their
semantical correctness is presented in Section 5. Lessons
learned are discussed in Section 6, before related work is
surveyed in Section 7. Section 8 concludes the paper.

2 Role of OCL in Model Transformations

This section shortly introduces model transformations in
general as well as the role and importance of OCL expres-
sions therein in particular. Although OCL might also be
used in other contexts, e.g., to specify MM constraints [4]
restricting the instantiability of the MM, we focus on the
co-evolution of OCL in model transformations. Neverthe-
less, this work might also be applied to other application
contexts.

1http://www.eclipse.org/modeling/emf

abstract rule Element2Named {
 from elem : Class!Element
 to named : Relational!Named (
 name <- elem.id)
}
rule Class2Table extends Element2Named {
 from cl : Class!Class (cl.persistent = 1)
 to table : Relational!Table (
 name <- cl.package + '.' + cl.id,
 col <- cl.attr,
 key <- cl.attr->first())
}
rule Attribute2Column extends Element2Named {
 from attr : Class!Attribute
 to col : Relational!Column (
 type <- attr.type)
}

codomain
conforms to Class

package:String
persistent:Int

Attribute
type:String

Element
id:String

attr
[ordered,
unique]

Attribute
type:String

Element
name:String

 attr
[ordered=false,

unique]
necessitates

Metamodel
Evolution

Changes
 Create Class
 Create Reference
 Delete Attribute
 Rename Attribute
 Move Attribute
 Change Ordered
 Change Type

1

4

Class2Relational Transformation Definition0 Class Metamodel0

Class Metamodel1

Impacts
Changes might break syntax

of OCL expressions

Class
package:String
persistent:Boolean

domain
conforms to

codomain
conforms

to *

*

-

Δ

+

Δ

Δ
Δ

Type
type:String

1

Class2Relational Transformation Definition1

Resolution
Breaking impacts have
to be resolved by co-

evolution

3

5 6

7

4

3

1

5
6

7

5
type

Table

Column
type:String

col

Named
name:String

Relational Metamodel

key 1

c1:Class
name="Person"
persistent=true

a2:Attribute
name="FullName"

a3:Attribute
name="Age"

a1:Attribute
name="Id"

attr

attr

attr

t1:Type
type="Integer"

t2:Type
type="String"

type

type

type

c1:Class
id="Person"
package="University"
persistent=1

a2:Attribute
id="FullName"
type="String"

a3:Attribute
id="Age"
type="Integer"

a1:Attribute
id="Id"
type="Integer"

attr

attr
attr

M
od

el

Co
-E

vo
lu

tio
n

Input Model0

Input Model1

t1:Table
name="University.Person"

c2:Column
name="FullName"
type="String"

c3:Column
name="Age"
type="Integer"

c1:Column
name="Id"
type="Integer"

key

col

col

Output Model0

Execution0

 input

output

executes

Transformation Engine

Execution1

 input

Transformation
Co-Evolution

output

executes

M
2

M
1

domain
conforms to

Output Model1

context Element
inv: self.id <>
OCLUndefined

context Class
inv:
self.persistent=0
 or
self.persistent=1

domain conforms to

+ 2
3
4
5
6
7

2

ne
ce

ss
ita

te
s

Conceptual Transformation
Metamodel (excerpt) OCL Metamodel (excerpt)

VariableExp

OclExpression

FeatureCallExp

OperationCallExp

PropertyCallExp

Ecore Metamodel

Rule

InPattern OutPattern

Binding

conforms to
conforms to

StringLiteralExp
Filter

conforms to

Collection

Bag

Set

Sequence

OrderedSet

M
3

conforms to

conforms to

conforms to

conforms to

conforms to

conforms to

conforms to

Figure 1: Metamodel Evolution and its Impact on OCL Expressions

2.1 Model Transformations in a Nutshell

Model transformations aim at transforming source models
conforming to a source MM to target models conforming
to a target MM, whereby both MMs conform themselves
to a meta-metamodel, e.g., Ecore, being the Eclipse real-
ization of MOF [23]. Consequently, transformation defi-
nitions realizing model transformations must conform to
these two MMs in addition to the transformation MM in-
cluding the OCL MM, which specifies the syntax of trans-
formation definitions. Syntactical correctness of a model
transformation may be checked by an according compiler,
while the semantical correctness may be verified by given
requirements the transformation has to fulfill. To define
such requirements, our PaMoMo language may be utilized
(cf. Sect. 5). To give an example, Figure 1 provides a
small excerpt of the well-known Class2Relational trans-
formation2. Please note that despite its simplicity, it is
nevertheless able to serve as a running example through-
out this paper.

2For a complete example see http://www.eclipse.org/atl/atlTransformations/

The given transformation definition states that per-
sistent classes should be transformed into tables and at-
tributes into columns by two dedicated transformation
rules. In order to avoid code duplication, common trans-
formation parts have been extracted to a separate base-rule
Element2Named, containing the assignment of ids of
elements. The lower part of Figure 1 shows a concrete
model describing a persistent class named Person com-
prising three attributes, i.e., Id and Age of type Integer
as well as Fullname of type String. This model serves
as input for the transformation engine, which outputs a
model, comprising a Table with name University.Person
and three columns resulting from the attributes.

2.2 Role and Importance of OCL

OCL expressions as part of our exemplary transforma-
tion definition are highlighted in Figure 1, exhibiting the
role and importance of OCL. From this, one may rec-
ognize that OCL expressions are used in two indispens-
able roles [16]. First, OCL is used in bindings to query
source model elements, which are used to produce the tar-

get model (cf., e.g., “cl.package+’.’+cl.id” calculating the
values for the target attribute Table.name). Second, OCL
is utilized in conditions to steer the control flow (cf., e.g.,
“cl.persistent=1” to transform persistent classes, only).
Thus, OCL expressions constitute large parts of transfor-
mations [29] and by this play an essential role.

As already stated above, OCL may also be used to
constrain the instantiability of MMs. The exemplary con-
straints shown in Figure 1 state that for the attribute Ele-
ment.id a value must be set as well as that the value of the
attribute Class.persistent must be either 0 or 1.

Although transformations must conform to three MMs,
OCL expressions depend on the source MM by means of a
so-called “domain conforms to”-relationship [21] and the
OCL MM by means of a “conforms to”-relationship [14],
only. This is, since OCL expressions are used to query
source models and do not refer to the target MM. Thus,
this paper focuses on the evolution of the source MM and
the co-evolution of OCL expressions.

3 Metamodel Evolution and its Impacts on OCL Ex-
pressions

This section discusses the challenge of MM evolution
along with a summary of arising impacts on OCL expres-
sions. For details, the interested reader is referred to Kusel
et al. [17], where we provide an in-depth analysis of this
topic.

3.1 Metamodel Evolution

Like any other software artifact, MMs are subject to con-
stant evolution, e.g., due to needs for (i) adaptation caused
by changing software environments, (ii) perfection in-
duced by user requirements, or (iii) correction because
of errors [19]. A particular MM evolution may be de-
scribed by dedicated changes that lead to a new version
of the MM.

To exemplify this, an evolution of the running example
is shown in the left part of Figure 1. One may see that a
new version of the source MM has been created by seven
dedicated changes. Thereby, a new class Type has been
created (cf. 1 in Fig. 1) as well as a new reference At-
tribute.type (cf. 2 in Fig. 1) connecting the new class.
Furthermore, the attribute Attribute.type has been moved
to this new class (cf. 5 in Fig. 1)3. In addition to that,
the attribute Class.package has been deleted (cf. 3 in
Fig. 1) and the attribute Element.id has been renamed to
Element.name (cf. 4 in Fig. 1). Finally, the reference
Class.attr has been set to be unordered (cf. 6 in Fig. 1)
and the type of the attribute Class.persistent has been
changed from Int to Boolean (cf. 7 in Fig. 1).

When analyzing the impacts of these changes on the
occurring OCL expressions, one might recognize that all
changes except the two constructive changes (cf. 1 and
2 in Fig. 1) have a breaking impact on the OCL syntax
and thereby prevent a successful execution of the exist-
ing model transformation. Consequently, a co-evolution
of the OCL expressions is needed by dedicated resolution
actions. But before discussing potential resolution actions,
the questions which changes may arise at all and which of
them might have a breaking impact on OCL expressions
are discussed subsequently.

3.2 Complete and Minimal Set of Changes

To be able to describe arbitrary evolutions and analyze
their impacts on OCL expressions, a systematic set of

3Although composite changes are not part of this work, this sequence of changes
represents the composite change “Extract Class” [7].

- Delete EENumLiteral

ETypedElement
ordered:boolean
unique:boolean
lowerBound:int
upperBound:int

EClassifier
...

ENamedElement
name:String

EDataType
...

EAttribute
...

EEnum

...

EEnumLiteral
…

EClass
abstract:boolean

Δ Update Name

Δ Update Ordered

Δ Update Lower-
Bound/Upperbound

Δ Update
abstract

eContainingClass

eSuperTypes

eAttributeType
Δ Update

eAttributeType

EStructuralFeature
... EReference

containment:boolean Δ Update
Containment

eEnum
Δ Update eEnum

eReferenceType
Δ Update eReferenceType

+ Create EClass

+ Create EAttribute

+ Create ERereference

+ Create EDataType

- Delete EClass

- Delete EAttribute

- Delete ERereference

- Delete EDataType

Legend: +... Constructive -... Destructive Δ... Updative

Δ Update
eOpposite

eOpposite

Δ Update
eSuperType

EPackage
...

+ Create EPackage
- Delete EPackage

+ Create EENumLiteral

+ Create EEnum

- Delete EEnum

eSuperPackage

Δ Update
eSuper-
Package

ePackage

Δ Update ePackage

Δ Update Unique

Δ Update eContainingClass

Figure 2: Set of Atomic Changes derived from Ecore

atomic changes has been derived from Ecore [17] which is
shortly summarized in the following. This set of changes
fulfills two criteria – completeness to allow for any possi-
ble change and minimality to avoid the analysis of overlap-
ping changes as it may be the case for composite changes.
For deriving this set of changes, we referred to the Ecore
meta-MM. Thereby, all potential constructive and destruc-
tive changes have been derived by resorting to all concrete
meta-classes, e.g., EClass. In addition to that all poten-
tial updative changes have been derived by referring to all
meta-features, e.g., EClass.abstract. Figure 2 shows the
resulting set of atomic changes.

This set of changes has been analyzed according to its
effects with respect to structural complexity, i.e., the num-
ber of instantiable types, and information capacity, i.e.,
the potential number of valid model instances, since these
two criteria are significant for the impacts on OCL ex-
pressions as well as subsequently for resolution. Thereby,
changes affecting structural complexity indicate impacts
in accessing MM elements in OCL expressions and have
been evaluated by counting the number of all instantiable
types according to [27]. In contrast, changes concerning
information capacity indicate impacts on the result set of
OCL expressions and have been evaluated by counting the
potential number of all valid instances of a MM follow-
ing [22]. These two criteria are able to partition the set of
updative changes into six groups according to their behav-
ior, which are used to analyze impacts and resolution ac-
tions in the following. The resulting partitions comprising
1 renaming updates, 2 moving updates, 3 relaxing up-
dates, 4 restricting updates, 5 constructive updates, and
finally, 6 destructive updates may be found in Table 2.

3.3 Impacts on OCL

In order to know, which atomic changes of the sys-
tematic set of changes require resolution, the impacts
of changes on OCL expressions are summarized in this
section. Thereby, we distinguish between non-breaking
changes, i.e., those not affecting the syntactical correct-
ness of OCL expressions, and breaking changes. Please
note that the evaluation assumes that changed MM ele-
ments have been used by at least one OCL expression
and the worst case scenario is considered, i.e., changes are
evaluated as breaking, if there exists at least one case that
breaks the syntactical correctness of the OCL expression.
The results of the evaluation are presented in Table 2.

Bag Sequence Set OrderedSet

upperBound = 1 unique/ordered not applicable 

unique = false and ordered = false 

unique = false and ordered = true 

unique = true and ordered = false 

unique = true and ordered = true 

upperBound > 1

Ecore Meta-Feature

lowerBound

Scalar
Type

OCL Type
Collection

no impact on OCL type

Table 1: Bounds of ETypedElements with their Effect on
OCL Types

3.3.1 Constructive/Destructive Changes

Constructive changes do not impact OCL expressions,
since newly created elements can not have been referred
to. In contrast, destructive changes always have breaking
impact on OCL expressions, since having a destructive ef-
fect on the structure.

3.3.2 Updative Changes

In the following, updative changes are evaluated on basis
of the introduced groups.

Group 1 Renaming Updates: Renames are always
breaking, since renamed elements are no longer accessi-
ble under their original name.

Group 2 Moving Updates: Moving Updates are al-
ways breaking, since moves change the structure of in-
stances by changing the position of elements.

Group 3 Relaxing Updates: Although relaxing up-
dates leave the structural complexity unaffected, and relax
the instantiability of the MM, i.e., increase the informa-
tion capacity, only, they may nevertheless break the syn-
tax of OCL expressions, since they are able to change the
underlying OCL datatype and by this, change the set of
valid operations (cf. Table 1). Please note that any change
affecting the underlying OCL collection type may break
the OCL syntax, since the OCL collection types are in not
connected by inheritance relationships [3].

Group 4 Restricting Updates: Restricting updates, in-
cluding the opposite cases of group 4 may break the syn-
tactical correctness again due to changes in the underly-
ing OCL types. Additionally, a restriction of ETypedEle-
ment.upperBound may break OCL expressions access-
ing elements by index, i.e., by the operation at(index).

Group 5 Constructive Updates: Constructive updates
increase structural complexity and information capacity
alike and are, thus, non-breaking with respect to syntax
comparable to constructive changes.

Group 6 Destructive Updates: Since destructive
updates decrease structural complexity and information
capacity, these changes are comparable to destructive
changes and thus, always breaking.

4 Resolution Actions for Breaking Changes

In this section, the purpose of resolution actions is dis-
cussed, before the conceptual approach for our resolution
actions is presented. As a proof-of-concept, an exemplary
realization of the approach is demonstrated by means of
ATL helpers, which are comparable to methods in object-
oriented programming languages. An overview of the res-
olution actions may be found in Table 2.

4.1 Purpose of Resolution Actions

The purpose of resolution actions is threefold. First, they
must re-establish syntactical correctness in order to re-
enable the execution of the model transformation to pro-
cess the evolved instances. Second, the semantics of the

original transformation should be preserved as far as pos-
sible, i.e., semantical correctness should be ensured by the
resolution actions, which means in our case the preserva-
tion of the specified requirements the transformation has
to fulfill. While the achievement of syntactical correctness
may be verified automatically by a compiler, the verifica-
tion of the achievement of semantical correctness is more
challenging and, thus, will be discussed in detail in Sec-
tion 5. Third, resolution actions must be consistent with
the co-evolution of other dependent artifacts, like model
co-evolution as well as semantical requirements.

4.2 Conceptual Approach

For achieving syntactical correctness as well as semanti-
cal correctness, we propose a conceptual approach that es-
tablishes a “virtual view” on source MM1 (cf. Fig. 3),
which basically maps the newly structured input mod-
els conforming to the source MM1 such that they appear
to the transformation in the original structure, i.e., con-
forming to the source MM0. Consequently, this approach
tries to re-establish the information contained in the orig-
inal source MM0 on basis of the information still avail-
able in the new source MM1. Thus, differently struc-
tured information might be recovered automatically by
dedicated resolution actions (cf., e.g., the information of
the attribute Attribute.type might be recovered by ac-
cessing Type.type instead). However, one might recog-
nize that deleted information can not be restored automat-
ically and, consequently, demands for user intervention in
the resolution process (e.g., the information contained in
the attribute Class.package is lost as exemplified by the
change “Delete Attribute” in Fig. 1).

One may see that this approach is able to ensure syn-
tactical correctness, since the view simulating MM0 is
compatible with the original transformation definition. By
this means it also ensures semantical correctness preserv-
ing the specified correctness requirements (cf. Sect. 5).
The original transformation is extended by helpers, only,
realizing the virtual view approach that restores all the in-
formation still available in MM1 or demands for user in-
tervention otherwise.

4.3 Proof-of-Concept Realization

In this section, a proof-of-concept realization of the con-
ceptual approach is presented. Although this implementa-
tion relies on ATL, the conceptual approach is not limited
to a certain transformation language.

For realizing the virtual view, basically two approaches
might be followed. First, the resolution actions realizing
the virtual view may be ”inlined”, i.e., the original trans-
formation gets adapted at the corresponding positions, be-
ing closely related to program transformation [28]. Sec-

Class
package:String
abstract:Int

Attribute
type:String

Element
id:String

attr
[ordered,
unique]

Attribute
type:String

Element
name:String

 attr
[ordered=false,

unique]

Class
package:String
abstract:Boolean

*

*

Type
type:String

1 type

Class Metamodel0

Class Metamodel1

Virtual View

might not be
restored

automatically

might not be
restored

automatically

Figure 3: Exemplary Virtual View

Impact

Meta-Feature State Change of Meta-Feature Structural
Complexity

Information
Capacity

Non-
Breaking

Resolution
Action

Template for
ATL Helper
















 Renaming Updates ENamedElement.name oldName → newName o o


rename
Listing 4 (except
for EClass and

EDataType)
EPackage.eSuperpackage oldESuperPackage → newESuperPackage 
EClassifier.ePackage oldEPackage → newEPackage 
EStructuralFeature.eContainingClass along reference with upperBound = 1 
EENumLiteral.eEnum oldEENum → newEEnum 
EClass.abstract true → false 
EReference.eOpposite remove 
ETypedElement.lowerBound x → y, y<x 
EReference.containment true → false 

x → y, x>1, y>x 

1 → >1 
cast to single valued

element Listing 9

ETypedElement.ordered true → false 
ETypedElement.unique true → false 
EClass.abstract false → true 
ETypedElement.lowerBound x → y, y>x 
EReference.containment false → true 
EReference.eOpposite add 

x → y, y>1, y<x  user intervention n.a. (direct
adaptation)

>1 → 1  cast to collection Listing 10
ETypedElement.ordered false → true 
ETypedElement.unique false → true 

EClass.eSuperType add* 
EStructuralFeature.eContainingClass pull up* 
EAttribute.eAttributeType specialize 
EReference.eReferenceType specialize 
EClass.eSuperType remove 
EStructuralFeature.eContainingClass push down and other cases 
EAttribute.eAttributeType generalize and other cases 
EReference.eReferenceType generalize and other cases 

n.a.

not needed n.a.

ETypedElement.upperBound
Relaxing Updates

o -

o +

+ +

Legend: + ... increase o ... neutral - ... decrease *... decreasing effect if required features are introduced n.a. ... not applicable

U
pd

at
iv

e
C

ha
ng

es

not needed



- -

- & + o

Destructive Updates

ETypedElement.upperBound

 Constructive Updates

Restricting Updates

C
on

st
ru

ct
iv

e
 C

ha
ng

es
D

es
tr

uc
tiv

e
C

ha
ng

es
Create EPackage
Create EClass
Create EAttribute
Create EReference
Create EDataType
Create EEnum
Create EEnumLiteral
Delete EPackage
Delete EClass
Delete EAttribute
Delete EReference
Delete EDataType
Delete EEnum

n.a.

n.a. n.a.

+ +

- -

Name / Group

Moving Updates

Delete EEnumLiteral

n.a.

Change Resolution

cast to original
datatype

not needed

user intervention

Listing 8

n.a.

Listing 2

cast to original
datatype Listing 8

not needed

user intervention

n.a.

Listing 2

adapt navigation
path

Listing 6 (except
for ENumLiteral)

Table 2: Atomic Changes by Groups with their Impacts on OCL and Potential Resolution Actions

ond, the resolution actions realizing the virtual view may
be implemented by the concept of ATL helpers, without
modifying the original transformation definition, being re-
lated to data transformation [18]. Since the first approach
has the disadvantage that the border between the original
transformation and the resolution actions gets blurred and
by this hinders a subsequent manual adaptation, we de-
cided for an approach basing on data transformation. This
allows us to keep the resolution actions separated and thus,
facilitates understandability as well as maintainability by
the user. For realizing the helper approach, the transfor-
mation has to be adapted marginally by adding an empty
parameter list to accesses of the affected elements in or-
der to redirect the accesses to the helpers, e.g., calling
cl.package() instead of cl.package. In the following, the
proposed ATL helpers realizing the resolution actions for
each breaking change are presented. Thereby, the general
idea behind the resolution actions is discussed, before an
example as well as the generic templates for building the
helpers are provided.

4.3.1 Destructive Changes

All destructive changes decrease structural complexity,
thereby invalidating OCL expressions that access the
deleted elements. Since the information held by the
deleted elements is lost, it might not be restored automat-
ically in the virtual view. However, a generic template is
provided to support the user in the resolution process. For
example, the user may decide to compensate the deletion

of the attribute Class.package (cf. 3 in Fig. 1) by a sub-
stitution with an empty string, resulting in Listing 1.

Listing 1: Resolution Action for Destructive Updates
1 -- resolution action
2 helper context ClassD!Class def : package() : String =
3 ’’; -- user-defined resolution
4
5 -- transformation definition
6 rule Class2Table extends Element2Named {
7 from cl : Class!Class (cl.persistent = 1)
8 to table : Relational!Table (
9 name <- cl.package() + ’.’ + cl.id,
10 col <- cl.attr,
11 key <- cl.attr->first())
12 }

The generic template for creating the concrete helper
is shown in Listing 2. Thereby, the context of the helper is
set to the EClass the deleted feature was originally con-
tained in, i.e. featureV0.eContainingClass. The name
of the helper defined by “def” is the name of the original
feature, i.e., featureV0.name, and also its return type is
set to the original type, i.e., featureV0.type. The body of
the helper provides a place-holder for a user defined reso-
lution action.

Listing 2: Template for Destructive Changes of
EStructuralFeature

1 -- template for resolution action
2 helper context �featureV0.eContainingClass� def :
3 �featureV0.name�() : �featureV0.type� =
4 �user-defined resolution action�;

Please note that the deletion of an EClass or
EDataType might not be compensated with this approach
in ATL, since ATL does not allow for “virtual classes”,
which would be needed to emulate the deleted EClass or
EDataType. Furthermore, all OCL operations that op-
erate directly with type definitions, i.e., oclAsType(T),
oclIsTypeOf(T), oclIsKindOf(T), and T::allInstances(),
can not be resolved automatically, and thus, require user
intervention by, e.g., substituting the deleted type with an-
other one.

4.3.2 Updative Changes

In the following, resolution actions for updative changes
with breaking impact are proposed.

Group 1 : Renaming Updates: Each renaming update
has breaking impact on the OCL expressions that access
the renamed element. Thus, a resolution action is needed,
which returns the renamed element. Listing 3 shows the
resolved transformation definition of change “Rename At-
tribute” (cf. 4 in Fig. 1) of the running example.

Listing 3: Resolution for Rename
1 -- resolution action
2 helper context ClassD!Element def : id() : String =
3 self.name;
4
5 -- transformation definition
6 abstract rule Element2Named {
7 from elem : Class!Element
8 to named : Relational!Named (
9 name <- elem.id())
10 }

The generic template for this helper is shown in List-
ing 4. The context of the helper is set to its original con-
taining class, the name of the helper is set to the orig-
inal name, and the return type is also set to its origi-
nal datatype. In the body of the helper the value of the
renamed element is returned. Please note, that renam-
ing of EClasses may not be resolved in ATL using this
approach, since ATL does not support the definition of
virtual classes, as stated above. However, renaming of
EClasses may be resolved by program transformation.

Listing 4: Template for Renaming Updates
1 -- template for resolution action
2 helper context �featureV0.eContainingClass� def :

�featureV0.name�() : �featureV0.type� =
3 self.�featureV1.name�;

Group 2 : Moving Updates: While renames change
the identifier under which the information may be ac-
cessed, moving updates change the position from where
the information may be obtained. Consequently, moves
always entail a breaking impact, while being again auto-
matically resolvable by the virtual view without any loss
of information. For realizing the virtual view, the origi-
nal path has to be adapted to redirect to the new location
of the moved element. The change “Move Attribute” (cf.
5 in Fig. 1) of our running example is thus, resolved by
a helper that is responsible for this redirection (cf. List-
ing 5). Therefore, the new navigation path is defined in the
body of the helper, starting from the element itself along
the reference type to the original feature type.

Listing 5: Resolution for Moving Update
1 -- resolution action
2 helper context ClassD!Attribute def : type() : String

= self.type.type;
3
4 -- transformation definition
5 rule Attribute2Column extends Element2Named {
6 from attr : Class!Attribute
7 to col : Relational!Column (
8 type <- attr.type())
9 }

The template for moving updates is shown in Listing 6.
In this template, the context and return type are set to the
original types, while the name of the helper is set to the
name of the moved feature with an empty parameter list.
In the body of the helper, the newly created reference is
added in order to navigate over this reference to the moved
feature.

Listing 6: Template for Moving Updates
1 -- template for resolution action
2 helper context �featureV0.eContainingClass� def :

�featureV0.name�() : �featureV0.type� =
3 self.�reference�.�featureV0.name�;

In case of inlining a feature, i.e., moving it along a ref-
erence inside the class from which the feature navigated
stems from, we suggest to optimize the navigation by re-
moving this indirection. This optimization prevents vul-
nerability with respect to a potential deletion of the refer-
ences in the future, which is, e.g., entailed in a composite
change like “Inline Class”.

Group 3 : Relaxing Updates: Relaxing updates may
have breaking impact on OCL expressions, since they
might cause changes to the underlying OCL datatype as
introduced before (cf. Table 1). The potential datatype
changes may be classified into two cases: (i) collection
type to collection type and (ii) single valued element to
collection type. The virtual view approach allows to auto-
matically resolve both cases by casting the changed OCL
types back to their original types. While for casts be-
tween a collection with ordering information and a col-
lection without ordering information, the original order-
ing information might have been lost during model co-
evolution, for the cast from a collection type to a single
valued element, no information loss occurs in case that
still at most a single element is contained in the collection
after model co-evolution. Consequently, although syntac-
tical correctness might be achieved by the virtual view
approach, semantical correctness in the strict sense of re-
maining the observable behavior is not guaranteed in both
cases, since the inputs might have been changed during
model co-evolution, which demands for a relaxed notion
of semantical correctness as done in Section 5.

Case (i): Collection Type to Collection Type. For the
change “Change Ordered” in the running example, this
means to cast the type of the reference attr back to its
original type, i.e., OrderedSet, which is demonstrated in
Listing 7.

Listing 7: Resolution of Collection Type Change
1 -- resolution action
2 helper context ClassD!Class def : attr() : OrderedSet(

Class!Attribute) =
3 self.attr.asOrderedSet();
4
5 -- transformation definition
6 rule Class2Table extends Element2Named {
7 from cl : Class!Class (cl.persistent = 1)
8 to table : Relational!Table (
9 name <- cl.package + ’.’ + cl.id,
10 col <- cl.attr(),
11 key <- cl.attr()->first())
12 }

The template to generate helpers for casting the OCL
collection types is shown in Listing 8. Thereby, the return
type is set to the original type of the collection. In the body
of the helper the corresponding cast to the original type of
the feature is determined by checking the new type of the
collection and applying the corresponding cast operation
on this type.

Listing 8: Template for OCL Collection Type Casts
1 -- template for resolution action
2 helper context �featureV0.eContainingClass� def :

�featureV0.name�() : �featureV0.type� =
3 <if (�featureV0.name�->oclIsTypeOf(OrderedSet))
4 then self.�featureV0.name�.asOrderedSet()

5 else if (�featureV0.name�->oclIsTypeOf(Set))
6 then self.�featureV0.name�.asSet()
7 else if (�featureV0.name�->oclIsTypeOf(Sequence))
8 then self.�featureV0.name�.asSequence()
9 else
10 self.�featureV0.name�.asBag()
11 endif endif endif >;

Case (ii): Single Valued Element to Collection. Re-
laxing updates also comprise the increase of the upper-
Bound from 1 to > 1, which causes the underlying OCL
type to change from T to Collection(T). As a conse-
quence, the operations applied on elements of type T are
now invalidated, since the OCL datatype changed to a col-
lection. The corresponding resolution action is to extract
a single value from the collection, which is then used in
the transformation definition.

Listing 9 shows the template for an ATL helper to ex-
tract a single valued element from a collection. In the body
of the helper, an arbitrary element from the collection is
selected and returned.

Listing 9: Template for Collection to Single Valued Ele-
ment

1 -- template for resolution action
2 helper context �featureV0.eContainingClass� def :

�featureV0.name�() : �featureV0.type� =
3 self.�featureV0.name�->any();

Group 4 : Restricting Updates: Analogous to relax-
ing updates, restricting updates may also have breaking
impact on OCL expressions, since the underlying OCL
datatypes may have changed. Again two cases might be
distinguished according to the arising type change: (i) col-
lection type to collection type and (ii) collection type to
single valued element. The virtual view approach com-
pensates both cases with corresponding casts. However,
for restricting updates no additional information loss oc-
curs, since no ordering information may get lost.

Case (i): Collection Type to Collection Type. The tem-
plate for resolution has already been presented in Listing 8
and may be applied to this case as well.

Case (ii): Collection Type to Single Valued Element. In
case of decreasing the upperBound from > 1 to 1 the un-
derlying OCL type changes from Collection(T) to T caus-
ing the invalidation of collection operations such as first().
Thus, the corresponding resolution action is to wrap the
now single valued element into its former collection type.

Listing 10 shows the template for a helper, which re-
turns a collection containing a single element, i.e., the
original value of the feature.

Listing 10: Template for Single Valued Element to Col-
lection

1 -- template for resolution action
2 helper context �featureV0.eContainingClass� def :

�featureV0.name�() : �featureV0.type� =
3 �featureV0.type�{self.�featureV0.name�};

Finally, a collection might also be downsized by de-
creasing the upperBound from a value > 2 to a value
> 1. This change has breaking impact on OCL expres-
sions which access elements directly by their index, i.e.,
the operation at(index). If the index is greater than the
upperBound, the transformation will break, since the ac-
cess is out of bounds. However, since an automatic res-
olution action can only guarantee syntactical correctness
by setting the index between 1 and lowerBound, thereby
ensuring a return value for this operation, in this case user
intervention is required to redefine the index.

Group 6 : Destructive Updates: Analogous to de-
structive changes, destructive updates have breaking im-
pact on OCL expressions. Furthermore, type changes may
introduce a destructive effect, e.g., changing the type from
Integer to Boolean as done by the change “Change Type”
(cf. 7 in Fig. 1). Since there is no dedicated cast oper-

ation for Integer values to Boolean values in OCL, user
intervention is required to specify a suitable cast opera-
tion. A potential user-defined resolution action is shown
in Listing 11.

Listing 11: Resolution of Type Change
1 -- resolution action
2 helper context ClassD!Class def : persistent() :

Integer =
3 if (self.persistent = true) then 1 else 0 endif;
4
5 -- transformation definition
6 rule Class2Table extends Element2Named {
7 from cl : Class!Class (cl.persistent() = 1)
8 to table : Relational!Table (
9 name <- cl.package + ’.’ + cl.id,
10 col <- cl.attr,
11 key <- cl.attr->first())
12 }

Although no automatic resolution action may be gen-
erated, a template is provided (cf. Listing 2) which has to
be completed by the user according to the migrations rules
for model co-evolution and the semantic requirements.

4.4 Composition of Resolution Actions

After having dealt with the resolution of a single change,
this section deals with the composition of resolution ac-
tions of more than one change affecting the same MM
element, to provide a single helper as resolution ac-
tion. Thereby, basically four combinations of meaningful
changes on the same element are possible. First, a rename
and a move might be arbitrarily combined without any ad-
ditional type change. Second, a rename and a move might
be arbitrarily combined with a change of a collection type.
Third, a rename and a move might be arbitrarily combined
with a type switch from a collection type to a single value
typed element. Finally and forth, a rename and a move
might be arbitrarily combined with a switch from a single
value typed element to a collection type. For being able to
produce templates covering those potential combinations,
Listing 12 shows an EBNF, which is able to produce cor-
responding combined templates, covering the composition
of resolution actions.

Listing 12: Composition of Resolution Actions
1 VirtualView = HelperSignature "="
2 NoTypeSwitch | CollectionTypeSwitch |
3 CollectionToSingleValueSwitch |
4 SingleValueToCollectionSwitch;
5 HelperSignature =
6 "helper context �featureV0.eContainingClass�
7 def : �featureV0.name�() : �featureV0.type�";
8 Renaming = ".�featureV0.name�" |
9 ".�featureV1.name�";

10 Moving = "" | ".�reference�";
11 NoTypeSwitch = "self" [Moving] Renaming;
12 CollectionTypeSwitch = NoTypeSwitch
13 (".asSet()" | ".asBag()" |
14 ".asSequence()" | ".asOrderedSet()");
15 CollectionToSingleValueSwitch =
16 NoTypeSwitch "->any()";
17 SingleValueToCollectionSwitch =
18 "�featureV0.type�{" NoTypeSwitch "}";

5 Ensuring Semantical Correctness of Co-Evolved
Model Transformation Definition

As discussed previously, resolution actions must ensure
syntactical as well as semantical correctness. While the
former may be easily verified by a compiler, the verifi-
cation of the latter is more challenging. Thus, this section
discusses notions of semantics and introduces a formalism
for the automatic verification of semantical correctness.

5.1 Notions of Semantics

When surveying dedicated literature, ideas for the verifi-
cation of semantical correctness may be found for a re-
stricted set of change operations, namely for refactorings,
only. Thereby, a refactoring is said to be semantically cor-
rect, if the structure of a program or model is changed
without changing its observable behavior [26]. For ver-
ifying the semantical correctness, regression testing is a
common mechanism [7].

Consequently, regression testing may be applied to
verify semantical correctness of refactorings of MMs and
co-evolved transformations as well. However, there are
changes in our complete and minimal set of changes that
go beyond refactorings, e.g., destructive changes. Conse-
quently, a more general approach is desirable, which re-
laxes the strong condition of demanding for the exactly
same observable behavior. Thus, we propose to verify se-
mantical correctness by dedicated properties expressed in
the PaMoMo language [10], which must be fulfilled by a
transformation definition, thereby relaxing the strong con-
dition of exactly same observable behavior and by this,
enabling for the verification of semantical correctness for
all changes of our complete and minimal set of changes.

5.2 PaMoMo for Verifying Semantical Correctness

Originally developed for testing model transformations,
our PaMoMo language provides a visual, declarative, for-
mal specification language to describe correctness require-
ments for transformations. PaMoMo specifications allow
to express what a transformation should do, but not how
it should be done, thus, the mechanism may be used to
specify requirements for semantical correctness as well.

5.2.1 PaMoMo in a Nutshell

A PaMoMo specification consists of declarative visual
patterns, which may be positive or negative. Positive pat-
terns (denoted by a “P”) describe necessary conditions to
be fulfilled (i.e., the pattern is satisfied by a pair of models,
if these contain certain elements) while negative ones (de-
noted by a “N”) state forbidden situations (i.e., the pattern
is satisfied, if certain elements are not found). Patterns are
composed of two compartments containing object graphs.
The left compartment contains objects typed on the source
MM, while the objects to the right are typed on the tar-
get MM. Objects in the source and target compartments
may have attributes that may be assigned either a concrete
value or a variable. A variable may be assigned to several
attributes to ensure equality of their values.

The specified patterns provide a well-defined opera-
tional semantics on basis of QVT-Relations [24], which
allows to check whether pairs of input models and result-
ing output models fulfill the specified correctness require-
ments, which in consequence allows to evaluate the se-
mantical correctness of a transformation definition. For
further details about PaMoMo, the interested reader is re-
ferred to [10].

5.2.2 PaMoMo for the Running Example

To exemplify this, Figure 4 shows three PaMoMo pat-
terns that specify requirements regarding the semantical
correctness for the original Class2Relational transfor-
mation. Thereby, the positive pattern PersClass2Table
demands that for each Class object that is marked as be-
ing persistent (persistent=1) in a given source model,
a corresponding Table object with the same name (cf.
the bound variable X) must exist in a transformed tar-
get model. Furthermore, the negative pattern NonPer-
sClass2Table demands that for each Class object that is
not marked as being persistent (persistent=0) in a given

c:Class
id=X
package=Y
persistent=1

P(PersClass2Table)
Class Relational

t:Table
name=X

c:Class
id=X
package=Y
persistent=1

P(Attribute2Column)
Class Relational

t:Table
name=Y+'.'+X

a:Attribute
id=Z
type=T

co:Column
name=Z
type=T

c.attr‐>oclIsTypeOf(OrderedSet)

Requirements for
Semantical Correctness

Y : String = ''

c:Class
id=X
package=Y
persistent=0

N(NonPersClass2Table)
Class Relational

t:Table
name=X

Figure 4: PaMoMo Patterns for Class2Relational
c.attr‐>oclIsTypeOf(OrderedSet)

c:Class
name=X
persistent=true

P(PersClass2Table)
Class Relational

t:Table
name=X

c:Class
name=X
persistent=true

P(Attribute2Column)
Class Relational

t:Table
name=Y+'.'+X

a:Attribute
name=Z

co:Column
name=Z
type=Tty:Type

type=T

Co‐Evolved Requirements for Semantical Correctness

Y : String = ''

c:Class
name=X
persistent=false

N(NonPersClass2Table)
Class Relational

t:Table
name=X

Figure 5: Co-Evolved PaMoMo Patterns

source model, no corresponding Table object must ex-
ist in a produced target model. Finally, the pattern At-
tribute2Column demands that for each Attribute object
of a persistent Class object in a source model, a corre-
sponding Column object must exist in a transformed tar-
get model.

In order to be able to verify the semantical correctness
of the co-evolved model transformation, the PaMoMo pat-
terns must be co-evolved as well first. Since PaMoMo
patterns are specified by means of object graphs, the co-
evolution strategy employed for existing models may be
re-used for this task by a dedicated model co-evolution
tool such as COPE [13] assuming that the patterns are
model fragments of the correpsonding domain MMs, re-
sulting in the PaMoMo patterns shown in Figure 5. One
might recognize that deleting changes entail a deletion of
the corresponding parts of the patterns, thereby relaxing
the requirements for semantical correctness. By this, un-
bound variables on the target side of the patterns may
arise, such as “Y” in the pattern Attribute2Column, which
formerly demanded for the assignment of the name of the
package to the name of a table. As long as the variable
remains unbound, it serves as a wildcard. However, if
the user decides to replace the deleted package name, i.e.,
“Y”, by an empty string, then the resolution action has to
use the same value, i.e., an empty string, for the transfor-
mation definition to produce models that match this pat-
tern, i.e., being semantically correct. The co-evolved pat-
terns may then be used to check, if the co-evolved trans-
formation maintains semantical correctness by checking if
pairs of input models and produced output models fulfill
the requirements stated by the PaMoMo patterns.

In summary, PaMoMo allows to specify correctness re-
quirements for model transformations, thereby explicating
semantical correctness and by this providing a formalism
to verify the semantical correctness of a co-evolved model
transformation.

6 Lessons Learned

This section discusses the proposed approach by dedicated
lessons learned.

Realization of a Virtual View is Restricted in ATL.
As discussed in Section 4, our approach establishes a vir-

O
C

L
in

 M
od

el

Tr
an

sf
or

m
at

io
ns

O
C

L
C

on
st

ra
in

ts

in
 M

et
am

od
el

s

Ec
or

e

U
M

L

M
O

F

C
on

st
ru

ct
iv

e

D
es

tr
uc

tiv
e

U
pd

at
iv

e Syntactical
Correct-

ness

Verification
of

Semantical
Correct-

ness

Sc
op

e

A
to

m
ic

García et al. [8] ~ (ATL)  ~ ~ ~  (23 atomic & composite changes)  ~  ~   10
Garcés et al. [7]  (ATL)  ~ ~ ~  (number of atomic & composite changes unkown)    ~  
Kruse [15]  (ATL)  ~ ~ ~  (16 atomic & composite changes)    ~   14
Hassam et al. [10]   ~ ~ ~  (17 atomic & composite changes)    ~   6
Markovic et al. [19]     ~  (6 atomic & composite changes)    ~ [1]   1
Kosiuczenko [14]   ~ ~ ~  (number of atomic & composite changes unkown)    ~   ~ (As basis for composites, only)
Correa et al. [4]   ~  ~  (number of atomic & composite changes unkown)      
Own work  (ATL)      (30 atomic changes)     In progress  30

Number unkown

Number unkown

Technical
Space

Approach

Supported Changes

Co-Evolution of
Classes of
Supported
Changes

Focus of Work

Imple-
menta-

tion

Resolution Actions Kind and Number of Supporte

Complete Set Minimal
Set

Impact
Analysis
on OCL

Legend: ✓ ... true  ... false ~ ... partially true

Table 3: Comparison of Related Approaches

tual view on MM1 for resolution such that the input mod-
els appear to the transformation in the original structure,
i.e., conforming to the source MM0. Although this con-
ceptual approach is able to restore syntactical and seman-
tical correctness in general, the concrete realization on ba-
sis of ATL helpers is restricted, since ATL’s view capabil-
ities support virtual features, only, whereas virtual classes
are not supported. Thus, changes affecting classes have to
be resolved by a “program transformation” realization in
ATL, demanding for a hybrid approach.

Breaking Changes Inducing an Information Loss
Demand for User Intervention. Changes may be classi-
fied according to their potential of inducing an information
loss. Thereby, constructive changes, renaming updates,
moving updates, relaxing updates as well as constructive
updates never induce an information loss. In contrast, de-
structive changes, restricting updates, and destructive up-
dates always induce an information loss assuming the ex-
istence of corresponding instances. Since lost informa-
tion can not be re-established automatically, those changes
with breaking effect on the syntax always demand for user
intervention, except when automatic casts are possible as
in case of some kinds of restricting updates.

PaMoMo Enables Checking of Semantical Correct-
ness for Arbitrary Changes. As already mentioned, se-
mantical correctness may be specified by dedicated in-
put models and corresponding expected output models,
i.e., by specifying the observable behavior of a transfor-
mation. Consequently, a co-evolution may be said to be
semantics preserving, if the observable behavior has not
been changed. However, this methodology is applicable to
changes that do not interfere with the observable behavior,
i.e., refactorings, only, while all other changes might not
be semantics preserving according to this restrictive defi-
nition. PaMoMo relaxes this restrictive definition by not
specifying the observable behavior by hard-coded pairs of
input/output model but instead by stating properties the
models must fulfill. Consequently, PaMoMo enables the
checking of semantic correctness for arbitrary changes.

7 Related Work

Subsequently, related work is surveyed regarding its fo-
cus, supported changes, impact analysis on OCL, syntac-
tical and semantical resolution of breaking changes, and
availability of a prototypical implementation (cf. Table 3).

Regarding the focus of co-evolution in a specific tech-
nical space, two groups of approaches with respect to their
usage of OCL exist. Most closely related, the first group
of approaches targets the co-evolution of transformations
employing OCL expressions [8, 9, 16], all of them in the
technical space of Ecore, whereby the co-evolution of the

OCL-part is considered particularly by one of them [9],
only. More widely related since not focusing on OCL in
model transformations but still facing the same problems
in OCL co-evolution, the second group concentrates on
resolving inconsistent OCL constraints as parts of UML
class diagrams [5, 15, 20], and one exception basing on
MOF [11].

Considering the supported changes, six approaches [5,
8, 9, 11, 15, 16] partially allow for constructive changes,
five of those [8, 9, 11, 15, 16] partially consider destruc-
tive changes, and updative changes are partially supported
by all approaches. Thus, in contrast to our approach,
no approach covers a complete change set. However,
the surveyed approaches additionally consider composite
changes, which will be one line of future work as detailed
below. By concentrating on composite changes, no ap-
proach presents a minimal change set, which is different
to our work providing a systematically derived, minimal
set of atomic changes.

Regarding the impact on OCL, four approaches [9, 11,
16, 20] consider breaking and non-breaking impact on the
syntax, whereby one of them [9] considers impacts par-
tially, only.

Considering resolution, all approaches take care of
syntactical correctness, i.e., they syntactically resolve the
induced inconsistencies. Regarding semantical correct-
ness, five approaches [8, 9, 11, 15, 16] do not provide
any means for automatic verification, but partially rely on
refactorings, for which the according resolution actions
are defined in literature (cf., e.g., [7]). One approach does
not discuss semantics but instead refers to [1], in which
the semantics preservation for one refactoring, i.e, Move
Attribute, is proven. One approach [5] employs regression
testing, being most closely related to our approach.

Finally, six approaches [5, 8, 9, 11, 16, 20] provide an
implementation, while a sole approach is conceptual, only.
A full implementation of the work presented in this paper
is in progress, while the proof-of-concept has already been
presented in Section 4.

In summary, one may see that the work presented in
this paper is unique with respect to completeness and min-
imality of changes and, consequently, provides an entire
examination of changes. Furthermore, resolution actions
have been proposed for all breaking changes.

8 Conclusion & Future Work

In this paper, (semi-)automatic resolution actions for the
co-evolution of OCL expressions in model transforma-
tions in response to MM evolution have been proposed,
building upon the work presented in [17]. In the course
of this paper, several lines of future work have been iden-

tified. First, we plan on investigating composite changes
including refactorings, which may affect more than one
MM element, therefore resolution actions have to be com-
bined accordingly. Second, we will examine how the ATL
helpers realizing the virtual view may have to be adapted
in case of changes on the same MM element in series
evolution steps. For this, first ideas for optimizing ATL
helpers have already been discussed in Section 4. Finally
and third, the prototypical proof-of-concept implementa-
tion will be extended to a comprehensive tool basing on
EMF4 for impact analysis and co-evolution of OCL ex-
pressions in model-transformations.

Acknowledgements

This work has been funded by the Austrian Federal Min-
istry for Transport, Innovation and Technology (BMVIT)
grant FFG BRIDGE 832160, 838526, FFG FIT-IT 829598,
and by WTZ/ÖAD grant AR18-2013 and UA07-2013.

References

[1] Baar, T. and Marković, S. [2006], A graphical ap-
proach to prove the semantic preservation of UM-
L/OCL refactoring rules, in ‘PSI’, Springer, pp. 70–
83.

[2] Bézivin, J. [2005], ‘On the Unification Power of
Models’, SoSym 4(2), 171–188.

[3] Büttner, F., Gogolla, M., Hamann, L., Kuhlmann,
M. and Lindow, A. [2010], On Better Understand-
ing OCL Collections or An OCL Ordered Set Is Not
an OCL Set, in ‘Models in Software Engineering’,
Vol. 6002 of LNCS, Springer.

[4] Cabot, J. and Teniente, E. [2007], ‘Transformation
techniques for OCL constraints’, Science of Com-
puter Programming 68(3), 179 – 195.

[5] Correa, A. and Werner, C. [2004], Applying Refac-
toring Techniques to UML/OCL Models, in ‘UML
2004’, Springer, pp. 173–187.

[6] Di Ruscio, D., Iovino, L. and Pierantonio, A. [2012],
Evolutionary Togetherness: How to Manage Cou-
pled Evolution in Metamodeling Ecosystems, in
‘ICGT’, Springer, pp. 20–37.

[7] Fowler, M., Beck, K., Brant, J., Opdyke, W. and
Roberts, D. [1999], Refactoring: improving the de-
sign of existing code, Addison-Wesley.

[8] Garcés, K., Vara, J., Jouault, F. and Marcos, E.
[2013], ‘Adapting transformations to metamodel
changes via external transformation composition’,
SoSym pp. 1–18.

[9] Garcı́a, J., Diaz, O. and Azanza, M. [2013], Model
Transformation Co-evolution: A Semi-automatic
Approach, in ‘SLE’, Springer, pp. 144–163.

[10] Guerra, E., de Lara, J., Wimmer, M., Kappel, G.,
Kusel, A., Retschitzegger, W., Schönböck, J. and
Schwinger, W. [2012], ‘Automated verification of
model transformations based on visual contracts’,
Journal of Automated Softw. Eng. 20(1), 5–46.

[11] Hassam, K., Sadou, S., Gloahec, V. L. and Fleurquin,
R. [2011], Assistance System for OCL Constraints
Adaptation during Metamodel Evolution, in ‘SMR’,
IEEE, pp. 151–160.

4http://eclipse.org/modeling/emf/

[12] Herrmannsdoeorfer, M. and Wachsmuth, G. [2014],
Coupled Evolution of Software Metamodels and
Models, in ‘Evolving Software Systems’, Springer,
pp. 33–63.

[13] Herrmannsdoerfer, M., Benz, S. and Juergens, E.
[2009], COPE - Automating Coupled Evolution of
Metamodels and Models, in ‘ECOOP’, Springer,
pp. 52–76.

[14] Jouault, F., Allilaire, F., Bézivin, J. and Kurtev, I.
[2008], ‘ATL: A model transformation tool’, Science
of Computer Programming 72(12), 31–39.

[15] Kosiuczenko, P. [2009], ‘Redesign of UML class di-
agrams: a formal approach’, SoSym 8(2), 165–183.

[16] Kruse, S. [2011], On the Use of Operators for the
Co-Evolution of Metamodels and Transformations,
in ‘Int. Workshop on Models and Evolution’.

[17] Kusel, A., Etzlstorfer, J., Kapsammer, E., Rets-
chitzegger, W., Schönböck, J., Schwinger, W. and
Wimmer, M. [2014], A Systematic Taxonomy of
Metamodel Evolution Impacts on OCL Expressions,
in ‘submitted for Int. Workshop for Models and Evo-
lution @ MODELS 2014’.

[18] Lenzerini, M. [2002], Data integration: A theoretical
perspective, in ‘PODS’, ACM, pp. 233–246.

[19] Lientz, B. P., Swanson, E. B. and Tompkins,
G. E. [1978], ‘Characteristics of application software
maintenance’, CACM 21(6), 466–471.

[20] Markovic, S. and Baar, T. [2008], ‘Refactoring OCL
annotated UML class diagrams’, SoSym 7(1), 25–47.

[21] Méndez, D., Etien, A., Muller, A. and Casallas,
R. [2010], Towards Transformation Migration After
Metamodel Evolution, in ‘Int. Workshop on Models
and Evolution’.

[22] Miller, R. J., Ioannidis, Y. E. and Ramakrishnan, R.
[1993], The use of information capacity in schema
integration and translation, in ‘VLDB’, Vol. 93, Mor-
gan Kaufmann, pp. 120–133.

[23] Object Management Group [2011a], ‘Meta
Object Facility (MOF) 2 Core Specification’,
www.omg.org/spec/MOF/2.4.1.

[24] Object Management Group [2011b], ‘Meta Ob-
ject Facility (MOF) Query/View/Transformation
(QVT)’, http://www.omg.org/spec/QVT/1.1.

[25] Object Management Group [2014], ‘OMG
Object Contraint Language (OCL)’,
http://www.omg.org/spec/OCL/2.4.

[26] Opdyke, W. F. [1992], Refactoring object-oriented
frameworks, PhD thesis, University of Illinois at
Urbana-Champaign.

[27] Rossi, M. and Brinkkemper, S. [1996], ‘Complex-
ity Metrics for Systems Development Methods and
Techniques’, Information Systems 21(2), 209–227.

[28] Visser, E. [2001], ‘A survey of rewriting strategies in
program transformation systems’, Electronic Notes
in Theoretical Computer Science 57, 109–143.

[29] Wimmer, M., Martı́nez, S., Jouault, F. and Cabot,
J. [2011], ‘A Catalog of Refactoring for Model-to-
Model Transformations’, JOT 11(2), 1–40.

