
Situation Mining: Event Pattern Mining for
Situation Model Induction

Andrea Salfinger
Department of Cooperative Information Systems

Johannes Kepler University Linz
Altenberger Strasse 69

4040 Linz, Austria
andrea.salfinger@cis.jku.at

Abstract—Computational situation assessment (SA) systems
support human control center operators in situation moni-
toring, i.e., detecting and tracking relevant object and event
constellations in their observed environment. SA systems fre-
quently employ deductive reasoning techniques implemented in
Complex Event Processing or rule engines to solve this real-
time pattern recognition problem, by matching data sensed
from the monitored environment against templates for those
situations, characterizing the event patterns of interest. Hence,
they require explicitly formalizing the sought-after types of
situations, demanding human domain experts to conceptually
model their cognitive situation hypotheses, which represents a
time-consuming and non-trivial task. To overcome this situation
knowledge acquisition bottleneck, we therefore propose an ap-
proach for inductive situation modeling to leverage existing data
sets of recorded situations: We contribute a dedicated situation
mining algorithm, which bootstraps situation model acquisition
by automatically mining behavioral models of situations, so-
called situation evolution models, from already observed situation
instances. The feasibility of our approach is examined on a case
study from the domain of road traffic incident management, to
demonstrate how it turns previously implicit knowledge hidden
in the situation instances into explicit situation knowledge that
can be inspected and queried for situation analytics, and sketch
how the derived situation evolution models can be used within
a Model-Driven Engineering framework to directly generate the
corresponding rule code for automated situation assessment.

Keywords—event pattern mining, knowledge acquisition

I. INTRODUCTION

Motivation. Computational situation assessment (SA) systems
support human control center operators in situation moni-
toring, i.e., detecting and tracking relevant object and event
constellations in their observed environment. SA systems fre-
quently employ deductive reasoning techniques implemented
in Complex Event Processing (CEP) or rule engines to solve
this real-time pattern recognition problem, by matching data
sensed from the monitored environment against the situation
patterns of interest, for instance as demonstrated for the
domains of logistics [1], sea surveillance [2], road traffic
control [3], personalized situation alerts [4], environmental
monitoring [5], fleet management [6], and agriculture [7].
Situation Model Acquisition. Hence, these systems require
characterizing the sought-after types of situations in the form
of logical specifications of their constituting event constel-
lation, so that these can be translated into corresponding
situation detection rules that will trigger an alert whenever
this event constellation is observed. Thus, human domain
experts need to conceptually model their cognitive situation

hypotheses, which represents a time-consuming and non-trivial
task. Furthermore, domain experts’ knowledge may be tacit
or incomplete, leading to the situation knowledge acquisition
bottleneck [8] familiar from expert systems research. Explicitly
modeling their situation knowledge is perceived cumbersome
and error-prone, as human domain experts usually intuitively
recognize actual situation instances and their constituting
elements during their control center monitoring routines.
Approach. Therefore, we propose to bootstrap situation model
acquisition by automatically mining situation models from
previously recorded situation instances, using the meta-model
employed by the human modeler as hypothesis language to
generate models in the human’s modeling language, which
thus can be revised by the human modeler. This contrasts our
approach to related inductive approaches (i.e., approaches that
generalize models from instance data) basing on sub-symbolic
machine learning techniques, which employ different meta-
models, termed pattern or hypothesis languages (or model
classes) [9] in machine learning terminology, than the human
modeler. Our specific goal will be to reconstruct behavioral
models of situations [10], so-called situation evolution mod-
els [11], from already observed situation instances, using
a dedicated Situation Evolution Meta-Model (SEM) [11]
as pattern language, which represents a situation’s different
evolutionary states within a state-transition-system. Hence,
the joint evolution of a complex set of monitored objects
is discretized into its different relational states, to provide
a concise representation of the overall observed, relational
evolution patterns.
Contributions. For realizing the proposed inductive situation
modeling approach, we contribute a dedicated situation mining
algorithm. We demonstrate the benefits of this inductive ap-
proach on a case study from the domain of road traffic incident
management, to illustrate how it allows to turn previously
implicit knowledge hidden in the situation instances data into
explicit situation knowledge that can be inspected and queried
for situation analytics, and sketch how the mined situation evo-
lution models can be used within a Model-Driven Engineering
(MDE) framework to directly generate the implementation
code for automated situation assessment.
Structure of the Paper. In the next section, we provide the rel-
evant background on the conducted case study, before formally
specifying our problem in Section III. Section IV introduces
the developed approach, which is evaluated on our case study

in Section V. Further applications of situation mining are
outlined in Section VI. Section VII compares related work
on situation modeling and mining. Finally, section VIII draws
conclusions and presents ideas for future work.

II. MOTIVATION AND BACKGROUND

In the following, we will introduce the motivational back-
ground of our case study in the domain of road traffic incident
management. The analyzed road traffic incident records have
been obtained from ASFINAG1, the company that maintains
and operates Austria’s highway network, and are conceptually
based upon the “Data Exchange for Traffic Management and
Travel Information” standard, DATEX II2. DATEX II has been
developed by the European Committee for Standardization
as a common specification for exchanging traffic information
between traffic management centers, traffic service providers,
traffic operators and media partners in XML-format. It de-
scribes road traffic incident data in form of situations, whereby
Situation is defined as “An identifiable instance of a
traffic/travel situation comprising one or more traffic/travel
circumstances which are linked by one or more causal re-
lationships. Each traffic/travel circumstance is represented by
a Situation Record.”3. Thus, the complex type Situation
groups causally related road traffic objects and events, referred
to as SituationRecords. Since the described situation
may evolve over time, this element is versioned and has
unique identifier. Naturally, also the SituationRecord
element may evolve over time, which is thus also versioned
and has unique identifier. In the following, we will use the term
Object instead of SituationRecord, in order to comply
with the domain agnostic and thus more widely adopted JDL
data fusion terminology, which defines a situation as a set of
objects in relations [12].

The comprised Objects can be of three main categories,
notably traffic elements (events not planned by the traffic
operator, which are affecting, or have the potential to affect
traffic flow, including events planned by external organizations
such as exhibitions, sports events etc.)4, operator actions
(actions that a traffic operator can decide to implement to
prevent or help correct dangerous or poor driving conditions,
including maintenance of the road infrastructure)5, as well as
non-road event information (information about an event which
is not on the road, but which may influence the behavior of
drivers and hence the characteristics of the traffic flow)6.

Our data set has been compiled from live recording of such
real-time road traffic Situation publications: In roughly
three-minute update intervals, ASFINAG published a list of cur-
rently observed road traffic Objects, which has been stored

1www.asfinag.at
2www.datex2.eu
3http://d2docs.ndwcloud.nu/level2user/

level2PayloadPublication.html
4different types of abnormal traffic, activity, accident, conditions, equipment

or system fault, obstruction
5different types of roadworks, sign setting, network management, roadside

assistance
6different types of transit information, information about other transport

means, e.g., cancellation, or delay, on a tram, train, plane, etc. journey; service
disruption (rest area closed, no diesel etc.), road service disruption (no patrol,
emergency call out of order, etc.)

Message Publication Time Span
2014-12-27 23:59

- 2015-06-14 00:00

Situations (SI) 1887

(Traffic) Objects (OI) 2771

Object States (Updates) (oIt) 4445

Object Types (DATEX PHR Codes) (OT) 110

Table I: Data Set Characteristics

in a CSV file. Each row in this CSV file holds the information
on the current state of an observed traffic Object, including
its encompassing Situation’s ID, the type of observed
event, as characterized by DATEX DOB (object code defining
the type of event) and PHR codes (phrase code defining the
type of event) [13], its begin time, location on the road net-
work, unique identifier, and the message shown to approaching
motorists on Variable (Traffic) Message Signs (VMS). This
incident information originates from ASFINAG’s roadworks
management system and the public road traffic information
service provided by the Austrian radio station Hitradio Ö37,
which receives notifications about on-going traffic situations
from motorists calling its traffic newsroom operators. Table I
outlines the basic characteristics of the analyzed data set. We
note that situations are only implicitly given in this data set,
as each traffic object specifies its encompassing situation’s ID.

Concluding, DATEX II provides a generic data structure for
representing situation instances, i.e., supports a grouping of
objects to form situations, but lacks any more specific “typed”
information on the different kinds of situation we might
observe. However, we might use these instances to learn what
different “types” of situations we have been observing, i.e.,
derive descriptive models characterizing the observed situation
instances.

Thus, in the following sections, we will try to answer the
following questions:
• Can we reconstruct abstract models summarizing the

observed situations’ evolutions?
• Can we compile these models to an implementation

allowing for automatically detecting and tracking such
situation instances?

III. PROBLEM STATEMENT

Based on this motivational scenario, in the following, we
will formalize our problem.

A. Requirements

The input to our situation mining approach is a set of
situation instances SI , i.e., each recorded situation has been
labeled with a unique ID (I). Each situation comprises one or
multiple objects. Situation instances might have been created
by human operators responsible for their situation life-cycle
management, who handled the corresponding case. Our goal
will be to derive abstract specifications for these situation
instances, which we term Situation Evolution Types (SET s) –

7https://oe3.orf.at/programm/stories/
verkehrsredaktionstelltsichvor/

since these lift the observed instance-level information (of an
untyped and thus “arbitrary” situation instance SI) to type-
level information characterizing its composition in an abstract
fashion. Note that in the following, we will use super-scripts
to notationally distinguish instance-level (I) from type-level
(T) information.

We further require that also each encompassed object record
is identified by a unique ID, and of a particular object type
(OT). Objects might evolve, i.e., we receive updates on this
object - in this case, we observe a new object state record with
the same ID but different begin time, i.e., we can reconstruct
this object’s evolution as a sequence of its object states, which
are temporally ordered by their begin times. An object’s type
OT might change throughout its evolution, for instance, we
might observe the following change of OT s between two
object states: LS1 → LS2, meaning that an object starting
in an object state of type LS1 (“stationary traffic”) evolved
to LS2 (“queuing traffic”), or ACI → ACX, meaning that an
object starting as type “accident” evolved to a state of type
“accident cleared”.

Formalizing these requirements, we denote the evolution of
an object OI by a sequence of observations8 of its different
object states oIt :

OI :=< oIt1, . . . , o
I
tn >, (1)

where n denotes the number of observed object states (starting
at time instants t = t1 to tn), i.e., updates.

Analogously to formulating object evolution, a situation’s
evolution over its entire situation life-cycle would be formal-
ized as

SI :=< sIt1, . . . , s
I
tn >, (2)

whereby SI denotes a particular situation instance, which can
be expressed as a sequence of situation state updates, sIt ,
which we term situation state instances. Each situation state
instance sIt simply represents a container for the set of k object
states composing the situation state:

sIt := {oit}, i ∈ {1, . . . , k} (3)

The cardinality of a situation state instance sIt thus is the size
of its object state set, i.e., ‖sIt ‖ := ‖{oit}‖ = k. Concluding, a
situation instance simply represents a container for a changing
set of related object states. Updates of a situation (i.e., a change
of its situation state) correspond to updates of its contained
objects.

B. Prior Work – the Meta-Model
To automatically detect and track such situation instances

SI within object observations {o} sensed from the monitored
environment, deductive reasoning systems require abstract
descriptions on the “type-level”, which generalize the common
patterns underlying the observed instances such that these can
be translated to corresponding situation detection rules. In
previous work, we have therefore proposed a conceptual meta-
model, the Situation Evolution Meta-Model (SEM) [11], for
modeling different types of evolving situations, i.e., SET s.
By adopting a Model-Driven Engineering (MDE) approach,

8Notation: We denote sets by {. . .} and sequences by < . . . >.

this meta-model supports the automated generation of the
corresponding situation detection and tracking rules from the
specified SET s. The SEM models an evolving situation as
a state transition system:

SEM := (S,Λ,−→), (4)

whereby S comprises a set of Situation State Types (SST s),
which characterize a situation’s different object-relational
states, thereby corresponding to abstract descriptions for
sought-after situation states sIt . −→ encodes the transitions
between those states, i.e., the change from one relational state
to a different one, thus corresponding to binary relations over
S, i.e., −→⊆ S× S. Λ consists of the set of changes between
two succeeding states, outlining what has changed within an
evolution step. Concretely, SST s are defined as:

SST := (Ω, ρ), (5)

whereby Ω is a finite, non-empty set of object references
(OR). An object reference corresponds to an object type
(OT) referenced by an alias, such as Wrong-way Driver w
or Tunnel t. The alias is required to distinguish between
different objects of the same type in the reasoning process
(e.g., different traffic jams j1 and j2), hence an OR can be
considered as a variable (in the reasoning process, matching
object states are bound to these variables). ρ is a set of n-ary
relation types RT s that need to hold between these ORs, i.e.,
ρ : Ωn → {true, false} for the situation state to be true.
Hence, an SST is defined by a set of ORs in specific RT s,
thereby characterizing a situation’s different object-relational
states, whereas a transition represents a change of the situa-
tion’s relations, i.e., the real-world situation’s evolution from
one SST to another. Thus, a SET spans all evolutionary states
a real-world situation might potentially evolve through, i.e.,
encodes what could happen.

Name Definition

SI Situation

sIt Situation State

OI Object

oIt Object State

OT Object Type

RT Relation Type

OR
Object Reference
(OT + alias)

Ω set of Object References
{OR}

ρ set of Relation Types
{RT }

SST Situation State Type

SET Situation Evolution Type

SEM Situation Evolution Model

Table II: Notations

For automated sit-
uation detection, each
SST is compiled to a
rule by a model-to-text
transformation [14]. At
runtime, object states
{ot} matching a par-
ticular rule lead to the
instantiation of a situ-
ation state instance s?t
of the corresponding
SST . Situation tracking
then performs a dedi-
cated reasoning proce-
dure to detect whether
situation states s?t−1 and
s?t belong to the same
situation instance SI
(by performing reach-
ability analysis on the
SET and comparing
the states’ object com-
positions), and fusing
these updates to a contiguous sequence of situation state

updates, representing the situation instance SI . Thus, situ-
ation tracking essentially reconstructs a real-world situation
instance’s actual evolution by tracking its path through the
SET , i.e., represents a situation instance by the sequence
of SST s it has evolved through. Hence, different real-world
situation instances of the same SET may expose different
SST sequences. Thus, an SST essentially provides a “type
description” for the situation states st introduced in Eq. 3,
whereas SET s denote which transitions, i.e., evolutions, are
possible.

C. Goal
In previous work [11], [15], we have assumed that human

domain experts model these SET s, which then allows tracking
situation instances according to this model. Thus, we generate
the situation instances from the models:

({SET }︸ ︷︷ ︸
human-provided

, {o}) situation assessment−−−−−−−−−−→ {SI}︸ ︷︷ ︸
automated

In the present work, we take the opposite direction: We aim
at inducing such SET s from already observed, human-labeled
situation instances SI , thus, we generalize the situation models
from the situation instances:

{SET } situation mining←−−−−−−−−︸ ︷︷ ︸
automated

{SI}︸ ︷︷ ︸
human-provided

Both approaches use the same meta-model, the SEM,
for instantiating concrete models, i.e., types, of evolving
situations (SET s). Thus, SET s can be instantiated by the
human modeler or automatically induced via situation mining,
which also allows for interleaving human-driven and data-
driven modeling. In the following, we will outline how we
realize this mining approach, exemplified on our case study.
We note that while evaluated on our previously described road
traffic incident data conforming to the DATEX II standard,
our approach in general only requires labeled situations (each
situation instance must be identifiable by a unique ID), which
are composed out of a set of evolving objects of distinct types,
and is thus applicable to various evolving, object-relational
problem domains. Table II summarizes our general notational
conventions.

IV. APPROACH

Starting from our situation instances SI , situation mining is
divided into two phases, notably SST mining and SET min-
ing: Beginning with SST mining, we first need to split each
instance into its different situation states sIt (i.e., distinguish
the individual updates of this situation). Thus, we temporally
order all its encompassed object states by their distinct begin
times. We define a situation state as the set of co-occurring
object states, i.e., all object states active for the same time
interval. Thus, we can obtain the different situation states sIt
by splitting according to these time intervals. For instance,
assume our situation S1 comprises 5 different object states,
denoted as o11, o12, o13, o22, o23, following the notation oobjectIDt

with 3 different begin times t = 1, t = 2, t = 3. Thus, we can
discretize this situation instance into 3 different states:

{o11}t=[1,2[→ {o12, o22}t=[2,3[→ {o13, o23}t=3

Next, we need to derive the object-relational signature of
each of these situation states, i.e., determine SST := (Ω, ρ).
For each situation state sIt , we analyze its encompassed object
states ot, to derive their object references OR (to form Ω),
and the relation types RT holding between these ot (to
form ρ). For each unique identified object-relational signature,
we create a corresponding SST , defined by these ORs and
the RT s holding between them. For instance, for the above
example, we might derive the following object types: o11 and
o12 are of type ACI (accident), o13 is of type ACX (“accident
cleared”), and o22 and o23 are of type LS1 (“stationary traffic”),
which results in the following OT sequence characterizing the
evolution of this situation instance:

{o11}t=[1,2[︸ ︷︷ ︸ → {o12, o22}t=[2,3[︸ ︷︷ ︸ → {o13, o23}t=3︸ ︷︷ ︸
{ACI} → {ACI, LS1} → {ACX,LS1}

Furthermore, our RT analysis for the second and third state
gives that o12 and o22 are spatially located on the same road
segment, the same holds for o13 and o23. For this analysis,
we simply test all RT s of the relation families of interest
for the corresponding domain. In our road traffic scenario,
we are testing the Simple Features topological RT s defined
by the Open Geo-Spatial Consortium (OGC)9, constrained to
the underlying road network. RT s that evaluate to true are
included in the SST signature.

Thus, we can derive the SST signature that for SST
{ACI,LS1}, two object states of type ACI and LS1 need to be
co-occurring on the same road segment, to create a situation
state instance of that type, analogously we can derive an SST
definition for {ACX,LS1}.

o1
1

S1

O1

O2

o2
1

o2
2

o3
1

o3
2

ACI

S1

O1

O2

ACI

LS1

ACX

LS1

S
S
T

M
in

in
g

{ACI}

{ACX,LS1}

o7
3

S2

O3

O4

o8
3

o8
4

o9
3

o9
4

LS2

S2

O3

O4

LS1

ACI

LS1

ACX

{LS2}

S1 {ACI} {ACI,LS1} {ACX,LS1} S2 {LS2} {ACI,LS1} {ACX,LS1}

S
E
T

M
in

in
g {ACI,LS1}

signature derivation (Ω, ρ)

SST sequence reconstruction

SET reconstruction

Figure 1: Illustrative situation mining example.

Algorithm 1 outlines this SST mining step, which mainly
bases on set, sequence, list and string comparisons. Since
situations are analyzed individually, and only the resulting
SST signatures compared, SST Mining is inherently suited
for parallelization. The function ALIAS determines the OT of

9"geo:sf-disjoint", "geo:sf-touches", "geo:sf-overlaps", "geo:sf-equals",
"geo:sf-within", "geo:sf-contains", "geo:sf-within", "geo:sf-intersects",
"geo:sf-intersects", https://portal.opengeospatial.org
/files/?artifact_id=44722

Algorithm 1 SST Mining
Require:

S: A set of situation instances SI
RTs: A set of relation types RT to check

Ensure:
SSTs: A set of SST s
EvoSeqs: A set of annotated situation instances SI

1: function SST INDUCTION(S,RTs)
2: SSTs← new Map<String, SST>() . SST index
3: EvoSeqs← ∅ . init. evolution sequences
4: for all s ∈ S do . loop over situation instances
5: sitSeq ←<> . init. current evolution sequence
6: o← s.o . get all object states of this situation
7: T ← ORDER(o.beginTime) . extract times
8: for all t in T do: . loop over begin times
9: s̃st← new SST() . new SST candidate

10: ot ← {o | o.begintime = t}
11: s̃st.Ω← MAP(ot 7→ ALIAS(ot)) . get ORs
12: s̃st.name← MAP(ot 7→ ot.OT).toString()
13: s̃st.ρ← ∅ . initialize holding relations
14: for all oit ∈ ot do
15: ai ← ALIAS(oit) . define alias
16: for all ojt ∈ ot, j 6= i do
17: aj ← ALIAS(ojt)
18: for all r ∈ RTs do . extract relations
19: if CHECK(r(oit, o

j
t)) = TRUE then

20: s̃st.ρ.add(r(ai, aj))
21: sign← SIGNATURE(s̃st)
22: if sign ∈ SSTs.keys then
23: sst← SSTs.get(sign) . get existing
24: else
25: SSTs.put(sign, s̃st) . new SST found
26: sst← s̃st
27: sitSeq.append(sst) . extend sequence
28: EvoSeqs.add(sitSeq)
29: return SSTs.values, EvoSeqs

an object state, and assigns it a unique name within this sIt (we
basically create a “variable” for this object state oIt)10. SIG-
NATURE converts an SST to a unique textual representation
of its composition (involving its ORs and the RT s holding
between them).11 For checking holding RT s, Algorithm 1
assesses RT s between object pairs, i.e., checks for binary
relations. We note that unary RT s may be incorporated as
well, which only take a single object as input, and thus can
be conceived as filters on a specific attribute of this object.
Since any n-ary relation can be expressed by n binary relations
[16], this construct can be generalized to arbitrary n-ary RT s.
Regarding the polynomial complexity of the RT computations

10This name is built from the object state’sOT , followed by a counter value
in case the ot contains multiple object states of this OT . In the following,
we may not specifically distinguish between OT and OR, which correspond
to the same string representation in SST s only comprised of distinct OT s.

11Since Ω and ρ are sets and thus order-invariant, note that we impose an
artificial ordering (lexicographic order) to obtain a consistent textual mapping.

(lines 14 to 20)12, we note that real-world situations generally
do not constitute a large number of involved objects and
relations. Most RT families provide inherent potential for
optimizing these comparisons: In particular, symmetric RT s
(i.e., ρ(oti, otj) = ρ(otj , oti)), such as the topological RT s
we have employed in our case study, allow to halve the
number of object comparisons (to n2−n

2)13. Furthermore, RT s
such as spatial relations also might exhibit subsumption and
mutual exclusiveness (e.g., spatially equal, "geo:sf-equals",
subsumes overlapping, "geo:sf-overlaps", and automatically
excludes disjoint, "geo:sf-disjoint"). Hence, by organizing the
RT checking function in a principled way (in our implemen-
tation, lines 18 to 20 have been realized by a single, suitably
hierarchically organized RT checking function), RT checking
can be optimized.

As a result of SST mining, we have created abstract
descriptions for all unique observed co-occurring OT and
RT combinations, i.e., identified the state space as the set of
SST s, and represented each situation instance by the sequence
of its traversed SST s.

In the subsequent SET mining step, described in Algo-
rithm 2, we analyze these SST sequences, to determine the
observed transitions between SST s, which thus creates our
SET s by introducing a transition between two SST s for each
observed SST transition in these sequences (lines 4-9), i.e.,
identifying −→ from Eq. 4. SET s are created by processing
all - not yet processed - SST s, and recursively following their
incoming and outgoing transitions, until no further SST s can
be reached (in graph theoretic terms, if we regard our state
space as a graph, SET reconstruction corresponds to the iden-
tification of connected components, lines 10-23, whereby each
connected component corresponds to a SET). Thus, a SET is
defined by the observed connectivity between SST s (i.e., the
actually observed state evolutions). A difficult problem is how
to find an explicative name characterizing the SET ’s content
for a human – in the present approach, as a rough heuristic,
the SET ’s name is the most frequently occurring OT (with
randomly broken ties), which should indicate the main type
of event prevalent in this SET , or, for SET s only comprised
of a single SST , the name of the SST .

Fig. 1 illustrates the overall idea behind this fusion process.

V. CASE STUDY DISCUSSION

In the following, we discuss the results of applying our
situation mining approach to the road traffic incident data
described in Sec. II. In this proof-of-concept evaluation, we
examine whether situation mining is capable of extracting
domain-specific situation knowledge and generating meaning-
ful SET s. As can already be seen from the running example
from Sec. IV, situation mining allows us to determine which
events are semantically related, and how real-world situations
actually evolve, i.e., which OT constellations typically follow
each other. From this example (which is taken from our real-
world data), we can automatically derive that accidents might

12O((n2−n) r) for a situation state comprising n ots and testing r RT s
13by indexing the object states and only comparing oti and otj if j > i

(i.e., if we express this cross-product ot × ot as a matrix indexed by i and
j, this corresponds to checking the upper right triangular portion above the
diagonal)

Algorithm 2 SET Mining
Require:

SSTs: A set of SST s
EvoSeqs: A set of SST sequences (= annotated SI)

Ensure:
SETs: A set of SET s

1: function SET INDUCTION(SSTs,EvoSeqs)
2: for all sst ∈ SSTs do . init. transitions
3: sst.to← ∅, sst.from← ∅
4: for all sstSeq ∈ EvoSeqs do . loop over instances
5: for p=2, p++, p ≤ LENGTH(sstSeq) do
6: SSTp ← sstSeq[p] . current position
7: SSTp−1 ← sstSeq[p− 1] . previous pos.
8: SSTp−1.to.add(SSTp) . add transitions
9: SSTp.from.add(SSTp−1)

10: queue← ENQUEUE(SSTs) . build up SETs:
11: for all sst ∈ SSTs do . loop over SSTs
12: if sst ∈ queue then . not yet processed?
13: set← new SET()
14: set.ssts← ∅
15: nodesToExpand← {sst}
16: . recursively follow transitions to expand set:
17: while nodesToExpand 6= ∅ do
18: c← nodesToExpand.pop()
19: set.ssts.add(c)
20: expansion← {c.from, c.to} . expand
21: for all n ∈ expansion do
22: if n /∈ set.ssts then . yet processed?
23: nodesToExpand.push(n)

24: SETs.add(set) . new SET constructed
25: queue.remove(sst) . already processed

return SETs

trigger the build-up of traffic jams, which still persist even
when the accident site has been cleared, thereby obviating
the need to manually specify situation models encoding these
event patterns for automated situation detection.

The large variety of OT s encountered in our road traffic
application domain illustrates the benefits of such a knowledge
mining approach. From our 1887 labeled situation instances,
situation mining delivered 280 SST s, and 430 unique evo-
lution sequences, i.e., possible paths through the resulting
SET s. Retrieved SST s have a cardinality between 1 and
4, detailed results are provided in Table III. We note that
SST s of cardinality 1 do not perform any information fusion,
since these only comprise one OT . However, these have been
included to obtain a unified representation structure for situa-
tions and enable a unified situation tracking across a situation’s
entire life-time (since situation states st of cardinality 1-SST s
may evolve to more complex situation states st± of other
SST s at future time steps).

From our results, we observe that real-world situation defini-
tions are actually sparse with respect to our given “alphabet”
or input dimension, i.e., the set of OT s. As we have 110
distinct OT s, theoretically, we could generate 6105 SST
candidates of cardinality two (i.e., the cross-product OT ×OT ,

excluding symmetric cases), corresponding to the possible
associations of two OT s. However, the fact that in our real
world data, we only observed 157 SST s of cardinality two
(corresponding to 2.6% of the theoretically possible combi-
nations), indicates that for real-world situation instances, only
very specific combinations of OT s are semantically meaning-
ful (e.g., we might not require an SST relating “vehicle on
fire” with “flash floods”, whereas we did extract the SST
{VFR,SMO}, expressing the meaningful event constellation
“vehicle on fire” and “smoke hazard”), which we thus can
uncover with situation mining. Thus, whereas potential SST s
could also be automatically generated as a cross-product of the
set of OT s, we observe that the largest part of this state space
would correspond to combinations that are not semantically
meaningful. Hence, this highlights the benefit of our empirical
situation mining approach.

Analogously, we can examine the retrieved evolution pat-
terns. Theoretically, 78400 transitions between SST s would
be possible in our state space, whereas we actually only
observe 261 transitions (i.e., only 0.3% non-zero entries in
the transition or adjacency matrix SST s × SST s). As to
be expected from the previous finding and aligning with our
intuitive expectations, real-world situations apparently only
expose a small set of relevant evolution patterns, which can be
identified via situation mining. Regarding the observed con-
nectivity, i.e., actually observed state evolutions, our resulting
SET s appear overly fragmented, as the majority of SET s
only comprises a single (evolutionary) state, whereas the few
SET s comprising multiple SST s jointly cover 50% of the
SST space. However, this may be owed to the actually rather
low fraction of situation instances that indeed exposed evolv-
ing behavior (only 22% of SI comprised more than one s).
Either, (i) these SI indeed did not show any object-relational
development over time, or (ii) we might have missed some
updates due the sampling frequency of our data recording14,
or (iii) this might be due to to incompletely recorded SI ,
as operators might not have recorded all its distinct phases
– this may be corroborated by the finding that in our SI ,
we only rarely observe dedicated clearance messages that
denote a situation’s explicit resolution, such as ACX, ALL,
CAL, TCX, VWX etc., whereas SI often abruptly end in any
state. (i) and (ii) correspond to inherent characteristics of the
data and the data set compilation, respectively, which thus
need not be addressed in real-world application settings (in
which we would have access to the complete set of situation
records, without any sampling biases). Conversely, we note
that case (iii) would motivate the need for supporting operators
with automated situation detection and tracking means, to
obtain more complete and consistent situation records, which
facilitates situation analytics and situation prediction based on
previous situation experiences.

VI. APPLICATIONS

A. Situation Analytics

As a direct outcome of situation mining, visualizing the
resulting SET s allows us to perform situation analytics, i.e.,

14As described in Section II, we only received snapshots of currently
observed states in 3-min. intervals.

Counts Fraction

SET s 159 100%

single-SST 140 88%
multi-SST 19 12%

SST s 280 100%

cardinality 1 59 21%
cardinality 2 157 56%
cardinality 3 62 22%
cardinality 4 2 0.7%

Unique Evolution Sequences 430
Evolving Situations 407 22%

Table III: Situation Mining Results

we can perform Investigative Situation Management [17] by
exploring the evolution patterns in our situation memory. Fig. 2
shows an excerpt of the largest SET retrieved in our case
study, LS1, rendered with GraphViz15. As we observed in
our resulting visualizations, situation labeling seems to show
considerable variance: Apparently, different event codes have
been used for denoting similar clearances of a situation.
For instance, we encountered that both {VWX} (“vehicle
on wrong carriageway has left”) and {CAL} (“notification
cleared”) are successor-SST s for the SST {VWC} (“vehicle
on wrong carriageway”), corresponding to the operator action
of displaying messages on the VMS to notify approaching
motorists that the previous wrong-way driver warning has been
cleared, which denotes the resolution of a dangerous wrong-
way driver situation. This corroborates findings reported in
related work: Arco et al. have studied road traffic incident data
from Italy, and also noted that apparently, different control
center operators used different event codes for referring to
semantically equivalent state of affairs [13]. However, this
“operator-introduced” variance in the situation instances’ re-
sulting SST sequences results in unnecessarily large SET s,
in which many SST s are redundant in the sense that slightly
differentOT s are used for expressing a specific state of affairs.
Hence, our situation mining approach allows to investigate
- and consequently harmonize - such variance presumably
introduced by the different preferences of different human
operators for denoting such cases.

B. Situation Assessment

To relieve human operators from situation recording, we can
employ our resulting SET s to directly generate the rule code
for automatically detecting and tracking conforming situation
instances further on. As illustrated in the previous section, it
makes sense to precede this step by in-depth situation analyt-
ics, in which human domain experts can explore these models,
to get an impression of how situation instances are currently
composed, simplify these models (e.g., by fusing semantically
equivalent SST s), which will produce situation instances
exhibiting less “sequence variance”, which would benefit
situation prediction. Once domain experts have reviewed and

15https://github.com/nidi3/graphviz-java

revised the SET s, model-to-text (M2T) transformations famil-
iar from MDE can be employed, for automatically compiling
each SST to a corresponding situation detection rule. This
can be provided for various rule engine implementations, as
for each employed technology, only a corresponding M2T
transformation for our SEM needs to be implemented. In
our case study, which has been implemented in Java, we
have developed a proof-of-concept M2T transformation for
the JBoss Drools rule language16. Whereas we will omit the
details of this M2T implementation, which is beyond the
scope of the present work17, we will report the main findings
of our proof-of-concept evaluation. Our 280 SST s could be
automatically translated into corresponding Drools rules, such
as the following Drools rule (simplified), which encodes the
last SST from our running example from Section IV:

Listing 1: Drools Rule Example for SST {ACX,LS1}
r u l e "{ACX, LS1 }" s a l i e n c e 2

when
$acx : A s f i n a g T r a f f i c m e s s a g e (d a t e x _ p h r == "ACX")
$ l s 1 : A s f i n a g T r a f f i c m e s s a g e (d a t e x _ p h r == " LS1 ")
e v a l ($ l s 1 . g e t B e g i n t i m e () . e q u a l s ($acx . g e t B e g i n t i m e ()))
e v a l ($ l s 1 . ge tRoad_code () . e q u a l s ($acx . ge tRoad_code ()))
e v a l ($ l s 1 . g e t B e g i n m e t e r () == $acx . g e t B e g i n m e t e r ())
e v a l ($ l s 1 . g e tEndm e te r () == $acx . ge tEnd me te r ())

t h e n
S t a t e I n s t a n c e i n s = new S t a t e I n s t a n c e () ;
i n s . setName (" {ACX, LS1 } ") ;
i n s . s e tBeg inT ime (cur rT ime) ;
i n s . g e t A s f i n a g T r a f f i c m e s s a g e () . add ($acx) ;
r e t r a c t ($acx)
i n s . g e t A s f i n a g T r a f f i c m e s s a g e () . add ($ l s 1) ;
r e t r a c t ($ l s 1)
i n s e r t (i n s) ;

end

Based on our findings reported in Sections V and VI-A,
we have implemented a different tracking approach than in
previous work [11], as situation analytics has revealed that
the identified SET s are unlikely to be yet complete due to the
low fraction of evolving situations observed so far: Therefore,
we employ an adaptive tracking approach based on a specific
situation update rule, which fuses two temporally adjacent
situation states sIt− and s?t to SI whenever both share at
least one OJ , i.e., it compares their object states ot− and ot
and finds two states oJt− and oKt such that J = K.18 Hence,
this tracking approach is capable of extending the SET s with
additional transitions on-the-fly.

Running this SA implementation across the original data
set allows to assess the correctness and completeness of
the generated implementation. In our experiment, we have
obtained 99% recall, i.e., our rules were generally capable of
recovering the human-labeled situation instances19, which is
to be expected since our rules have been essentially “reverse-
engineered” from these instances. For future work, we plan
to examine the generalization capability of the mined models,

16https://www.drools.org
17E.g., we need to consider the different cardinalities of the SST s in this

transformation, to account for subsumption relationships between SST s, as
an event constellation matching SST {ACI,LC1,LS1} would also match
{ACI,LS1} and {LS1}, since {LS1} ⊂ {ACI,LS1} ⊂ {ACI,LC1,LS1}.

18This bases on the assumption that an object will simultaneously only
participate in one situation, which holds for our road traffic incident scenario.

19For these tests, we could only use completely spatio-temporally specified
situations, corresponding to 77% of our recorded SI , as some or our recorded
o had time or location slots unspecified, which would be required for
automated SA. This was typically the case for events reported from the lower
level street network that might impact highway traffic, which thus were only
of general interest to ASFINAG, and thus often are not fully specified.

Legend a

Code Designation
ACB accident involving

buses
ACI accident
ACM multi-vehicle

accident
ACX∗ accident cleared
ALL∗ all accident sites

cleared
BKD broken-down vehicle
DLY delays
LBL∗ left lane blocked
LC1∗ 1 lane closed
LCC∗ central lane closed
LCL∗ left lane closed
LCR∗ right lane closed
LO1∗ only 1 lane open
LS1 stationary traffic
LS2 queuing traffic
LS3 slow traffic
RCD road closed
REW rescue & recovery

work
RMK maintenance work
TUC∗ tunnel closed
VFR vehicle on fire

Figure 2: Excerpt of the largest retrieved SET , “LS1”. We observe that the sequences of associated events intuitively make
sense, such that accidents trigger the build-up of traffic jams and corresponding operator actions such as lane closures. Situation
mining thus seems to be capable of acquiring such domain-specific situation knowledge in an automated fashion. Color coding:
yellow = SST s without incoming transitions, orange = SST s with both incoming and outgoing transitions, green = SST s
without outgoing transitions.

aMapping from DATEX II PIM v2.3 Data Dictionary (https://www.datex2.eu/node/487, sheet “Enumeration literals”, columns “Original Code”
& “Designation”). Codes marked with ∗ do not appear in the Data Dictionary (thus might be ASFINAG-specific) and are mapped from their corresponding
VMS messages.

by measuring recall on novel situation record data sets. Sum-
marizing, our preliminary experiments highlight the potential
of our situation mining approach, considering that otherwise
280 rules would have to be captured and specified manually
to implement automated SA.

VII. RELATED WORK

Despite the popularity of deductive SA systems, which require
suitable logical specifications of the situations of interest to detect sit-
uation instances as event constellations matching these descriptions,
only few approaches so far have aimed at supporting this situation
knowledge acquisition. Human factors-based knowledge elicitation
techniques have been adopted in [18], to collect evidence on real-
world situations that should be modeled by means of participatory
observations of maritime control center operators. Since the manual
collection and analysis of operator actions is a time-consuming
process, [19] proposed an experience logging tool to automatically
record cyber analysts’ interactions with the operational system. The
logged event sequences and operator actions have then been mined
to reconstruct the underlying mental situation models of the cyber
analysts [20]. Hence, this approach for mining cyber situation models
out of logged operator actions represents the most closely related
work to our situation mining approach. However, the proposed mining
approach is confined to the application domain of cyber-security
analysis (e.g., by focusing on temporal RT s only, which are key
for the studied network intrusion detection tasks, such as event A
happened before event B), whereas situation mining generalizes to
arbitrary object-relational domains, by allowing arbitrary RT families
suitable for the domain at hand.

Inductive SA systems obviate human knowledge acquisition by
compiling situation models from observation data. However, sub-

symbolic statistical or machine learning models base on different
meta-models, termed pattern or hypothesis languages (or model
classes) [9] in machine learning terminology, than the human mod-
eler. Symbolic machine learning approaches, which induce logical
event descriptions from data, can be found in the area of non-
monotonic Inductive Logic Programming (ILP). For instance, [21]
derive symbolic event descriptions based on the Event Calculus by
means of inductive-abductive reasoning. However, these approaches
do not employ a specific meta-model like our SEM to constrain the
structure of the resulting situation types and thus do not incorporate
prior knowledge on the structure of the sought-after situation models.
This is also the case for related data mining approaches, such as
pattern-based spatio-temporal data mining approaches [22], which
base on different pattern languages than our situation management-
specific SEM.

Probabilistic SA systems based on probabilistic graphical models
(PGMs), such as (dynamic) Bayesian Networks [23], [24], Probabilis-
tic Relational Models [25], and Hidden Markov Models [26], result in
similar graph-based representations like our SET s, however, express
different semantics: The graph structures of PGMs represent the
“global” conditional statistical dependence relations between random
variables. Contrastingly, in our situation monitoring application, we
are interested in describing and analyzing various RT s between our
observed objects, thus identifying highly local patterns characterizing
spatio-temporally correlated object constellations.

VIII. CONCLUSION AND FUTURE WORK

In the present work, we proposed an approach for automated
situation knowledge acquisition: We contributed a situation
mining algorithm for reverse-engineering descriptive models

for different types of evolving situations, composed of a chang-
ing set of different types of objects, from already observed sit-
uation instances. We illustrated the benefits of generating such
situation evolution types from “untyped” situation instances,
which enables us to study the general evolution patterns in
our situation memory, i.e., perform situation analytics, and
automatically generate the corresponding situation detection
and tracking code, so that corresponding instances can be
detected automatically further on. Thus, our approach also
demonstrates how descriptive data mining results can be auto-
matically deployed, by compiling them to executable models
for real-time detection and tracking.

Our current situation mining approach corresponds to a
supervised data mining approach, since it requires labeled
example situations to derive its models. For future work,
we plan to extend this to an unsupervised situation mining
approach, which does not rely on a-priori provided situation
instances, but aims to identify potential situation instances
autonomously by analyzing recurring patterns within spatio-
temporal object-relational data sets, which may correspond
to potential situation instances. In the presented feasibility
study, we also generated a one-to-one mapping, i.e., each
individual observed situation instance is compiled to cor-
responding SST s (and subsequently detection rules) and
transitions. However, this gives rise to large and fragmented
SET s, whereby many SST s are redundant in the sense that
slightly different event types are used to refer to a specific
state of affairs. Hence, our approach allows to investigate -
and further harmonize - such operator variance. To further
support this harmonization, we plan to develop suitable SET
pruning strategies by automatically detecting such semantic
equivalences between individual SST s, and fusing them to a
single SST . This consequently will reduce the variance within
the SST sequences of tracked situation instances, and thus
improves situation prediction from previous experience, which
we also plan to investigate.

ACKNOWLEDGMENTS

This work has been funded by the Austrian Science Fund
(FWF) under grant FWF T961-N31. The analyzed data has
been provided by ASFINAG.

REFERENCES

[1] C. Matheus, M. Kokar, K. Baclawski, J. Letkowski, C. Call, M. Hinman,
J. Salerno, and D. Boulware, “Lessons learned from developing SAWA:
a situation awareness assistant,” in 8th International Conference on
Information Fusion, vol. 2, 2005.

[2] J. Edlund, M. Grönkvist, A. Lingvall, and E. Sviestins, “Rule-based
situation assessment for sea surveillance,” in Proc. SPIE 6242, Multi-
sensor, Multisource Information Fusion: Architectures, Algorithms, and
Applications, vol. 6242, 2006, pp. 624 203–624 203–11.

[3] N. Baumgartner, S. Mitsch, A. Müller, W. Retschitzegger, A. Salfinger,
and W. Schwinger, “A Tour of BeAware! – A situation awareness
framework for control centers,” Information Fusion, vol. 20, no. 0, pp.
155–173, 2014.

[4] V. K. Singh and R. Jain, Situation Recognition Using EventShop, 1st ed.
Springer Publishing Company, Incorporated, 2016.

[5] M. Stocker, “Situation Awareness in Environmental Monitoring,” Dis-
sertation, University of Eastern Finland, Kuopio, Finland, Nov., 2015.

[6] G. D’Aniello, A. Gaeta, V. Loia, and F. Orciuoli, “Integrating GSO and
SAW ontologies to enable Situation Awareness in Green Fleet Man-
agement,” in 2016 IEEE International Multi-Disciplinary Conference
on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA), 2016, pp. 138–144.

[7] M. Stocker, J. Nikander, H. Huitu, M. Jalli, M. Koistinen, M. Rönkkö,
and M. Kolehmainen, “Representing Situational Knowledge for Disease
Outbreaks in Agriculture,” Journal of Agricultural Informatics, vol. 7,
no. 2, pp. 29–39, 2016.

[8] I. Kadar, E. Bosse, J. Salerno, D. A. Lambert, S. Das, E. H. Ruspini,
B. J. Rhodes, and J. Biermann, “Results from levels 2/3 fusion imple-
mentations: issues, challenges, retrospectives, and perspectives for the
future an annotated perspective,” pp. 696 812–696 812–34, 2008.

[9] J. Fürnkranz, D. Gamberger, and N. Lavrač, Foundations of Rule
Learning, ser. Cognitive Technologies. Springer, 2012.

[10] M. Kokar, J. J. Letkowski, R. Dionne, and C. Matheus, “Situation track-
ing: The Concept and a Scenario,” in IEEE Military Communications
Conference (MILCOM 2008), 2008, pp. 3175–3181.

[11] A. Salfinger, W. Retschitzegger, and W. Schwinger, “Staying Aware in
an Evolving World — Specifying and Tracking Evolving Situations,” in
Proceedings of the 2014 IEEE International Inter-Disciplinary Confer-
ence on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA). IEEE, 2014, pp. 195–201.

[12] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, and F. White,
“Revisiting the JDL Data Fusion Model II,” in Seventh International
Conference on Information Fusion (FUSION 2004), 2004.

[13] E. Arco, A. Ajmar, F. Arneodo, and P. Boccardo, “An operational
framework to integrate traffic message channel (TMC)in emergency
mapping services (EMS),” European Journal of Remote Sensing, vol. 50,
no. 1, pp. 478–495, 2017.

[14] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 1st ed. Morgan & Claypool Publishers, 2012.

[15] A. Salfinger, D. Neidhart, W. Retschitzegger, W. Schwinger, and
S. Mitsch, “SEM2 Suite -Towards a Tool Suite for Supporting Knowl-
edge Management in Situation Awareness Systems,” in 15th IEEE
International Conference on Information Reuse and Integration (IRI
2014). IEEE, 2014, pp. 351–360.

[16] L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut, “Closed patterns
meet n -ary relations,” ACM Transactions on Knowledge Discovery from
Data, vol. 3, no. 1, pp. 1–36, 2009.

[17] G. Jakobson, J. Buford, and L. Lewis, “A Framework of Cognitive
Situation Modeling and Recognition,” in Military Communications Con-
ference, 2006. MILCOM 2006. IEEE, 2006.

[18] M. Nilsson, J. van Laere, T. Ziemke, and J. Edlund, “Extracting
rules from expert operators to support situation awareness in maritime
surveillance,” in 2008 11th International Conference on Information
Fusion, 2008.

[19] C. Zhong, D. Samuel, J. Yen, P. Liu, R. Erbacher, S. Hutchin-
son, R. Etoty, H. Cam, and W. Glodek, “RankAOH: Context-driven
Similarity-based Retrieval of Experiences in Cyber Analysis,” in 2014
IEEE International Inter-Disciplinary Conference on Cognitive Methods
in Situation Awareness and Decision Support (CogSIMA). San Antonio,
TX, USA: IEEE, 2014, pp. 207–213.

[20] C. Zhong, J. Yen, P. Liu, and R. F. Erbacher, “Learning From Experts’
Experience: Toward Automated Cyber Security Data Triage,” IEEE
Systems Journal, pp. 1–12, 2018.

[21] N. Katzouris, A. Artikis, and G. Paliouras, “Incremental learning of
event definitions with Inductive Logic Programming,” Machine Learn-
ing, vol. 100, no. 2, pp. 555–585, 2015.

[22] M. Celik, S. Shekhar, J. P. Rogers, and J. A. Shine, “Mixed-drove
spatiotemporal co-occurrence pattern mining,” IEEE Transactions on
Knowledge and Data Engineering, vol. 20, no. 10, pp. 1322–1335, 2008.

[23] Y. Fischer and J. Beyerer, “Defining dynamic Bayesian networks for
probabilistic situation assessment,” in 2012 15th International Confer-
ence on Information Fusion, 2012, pp. 888–895.

[24] M. P. Jenkins and D. Young, “BARRACUDA: An augmented reality
display for increased motorcyclist en route hazard awareness,” in 2016
IEEE International Multi-Disciplinary Conference on Cognitive Meth-
ods in Situation Awareness and Decision Support (CogSIMA), 2016.

[25] D. Meyer-Delius, C. Plagemann, G. Wichert, W. Feiten, G. Lawitzky,
and W. Burgard, “A Probabilistic Relational Model for Characterizing
Situations in Dynamic Multi-Agent Systems,” in Data Analysis, Machine
Learning and Applications. Springer Berlin Heidelberg, 2008.

[26] D. Meyer-Delius, C. Plagemann, and W. Burgard, “Probabilistic situa-
tion recognition for vehicular traffic scenarios,” in IEEE International
Conference on Robotics and Automation, 2009. ICRA ’09., 2009.

