
Automatic Data Transformation—Breaching the Walled Gardens of
Social Network Platforms

Martin Wischenbart2 Stefan Mitsch1 Elisabeth Kapsammer1

Angelika Kusel1 Stephan Lechner3 Birgit Pröll1 Werner Retschitzegger1

Johannes Schönböck2 Wieland Schwinger1 Manuel Wimmer2

1 Department of Cooperative Information Systems
Johannes Kepler University, Linz, Austria, Email: {firstname.lastname}@jku.at

2 Business Informatics Group, Institute of Software Technology and Interactive Systems
Vienna University of Technology, Vienna, Austria, Email: {lastname}@big.tuwien.ac.at

3 Netural GmbH, Linz, Austria, Email: s.lechner@netural.com

Abstract

Although many social networks on the Web allow ac-
cess via dedicated apis, the extraction of instance
data for further use by applications is often a tedious
task. As a result, instance data transformation to
Linked Data in the form of owl, as well as the inte-
gration with other data sources, are aggravated. To
alleviate these problems, this paper proposes a model-
driven approach to overcome data model heterogene-
ity by automatically transforming schemas and in-
stance data from json to owl/xml, utilizing the se-
mantic features of owl and Jena inference rules. We
present a prototypical implementation on the basis of
the Eclipse Modeling Framework. This implementa-
tion is applied and evaluated on data from Facebook,
Google+, and LinkedIn. Finally, we provide prospects
for semantic integration and managing evolution, as
well as a discussion of how to generalize our approach
to other domains and transformations between arbi-
trary technical spaces.

Keywords: Schema and instance transformation, data
model heterogeneity, model driven approach, social
network data integration, json to rdf & owl

1 Introduction

In recent years, online social networks have gained
great popularity amongst internet users. These net-
works serve different purposes and communities, for
instance, socializing on Facebook or Google+, or es-
tablishing professional networks in LinkedIn1 (Kim et
al. 2010). Since users are members of several social
networks, integrated profiles from multiple networks
are desired to achieve a comprehensive view on users,
which would, for instance, increase the quality of per-
sonalized recommendations (Abel et al. 2011), or sup-
port users’ search activities (Bozzon et al. 2012). In
our research project TheHiddenU2 we try to build
such comprehensive user profiles in owl, enriching

This work has been funded by the Austrian Federal Ministry of
Transport, Innovation, and Technology (BMVIT) under grant
FIT-IT 825070 and BRIDGE 832160.

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 9th Asia-Pacific Conference on Concep-
tual Modelling (APCCM 2013), Adelaide, Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology, Vol. 143. F. Ferrarotti and G. Grossmann,
Eds. Reproduction for academic, not-for profit purposes per-
mitted provided this text is included.

them with machine learning and information extrac-
tion methods, for use in recommender applications.
On our platform, non-experts shall express transfor-
mations of social network data to their preferred tar-
get format. Furthermore, prime goals are to make the
system transparent and trustworthy, by (i) providing
provenance information whenever demanded, and (ii)
by respecting and supporting users’ privacy needs at
all times.

For building comprehensive user profiles, in prin-
ciple, existing user models may be reused as target
schemas for the user profiles to be integrated, such
as grapple (Aroyo & Houben 2010) or others (Vi-
viani et al. 2010). However, in contrast to social net-
works, these approaches often base on common on-
tologies expressed in owl (foaf, etc.3). Social net-
works would benefit from using such ontologies, Se-
mantic Web technologies, and Linked Data, for in-
stance, to solve portability issues and to enable data
reuse (Razmerita et al. 2009). Thus, to ultimately
extract Linked Data and breach the walled gardens
of social networks, the resulting difference in techni-
cal spaces demands, as depicted in Fig. 1, that we
first tackle technical, syntactic (cf. 1), and data
model heterogeneity (cf. 2), before structural and
semantic heterogeneity (cf. 3) can be resolved, to
finally build integrated user profiles that are (i) com-
plete, concise, and consistent (Bleiholder & Naumann
2009), (ii) within aligned ontologies (Parundekar et
al. 2010), and (iii) in the form of Linked Data (Heath
& Bizer 2011). Dividing these required transforma-
tion steps helps to cope with evolution, and facilitates
reuse across data sources, because changes are kept
local (e.g., json replaces xml, while semantic map-
pings remain unchanged).

For handling all these kinds of heterogeneities, ex-
isting tools in the research area of the Semantic Web,
such as Virtuoso4, Triplr5, and Aperture6, can be ex-
tended with components for user profile extraction.
Typically, these components must be configured (i)
on the schema level with respect to the target schema,
which often is an existing ontology (e. g., foaf) com-
plemented with a manually created one, and (ii) on
the instance level with respect to transformation spec-

1www.facebook.com, plus.google.com, www.linkedin.com
2www.social-nexus.net
3foaf: foaf-project.org, sioc: sioc-project.org,

Relationship Ontology: vocab.org/relationship
4virtuoso.openlinksw.com
5triplr.org
6aperture.sourceforge.net

Proceedings of the Ninth Asia-Pacific Conference on Conceptual Modelling (APCCM 2013), Adelaide, Australia

89

Ls1: FB
Schema

Ls2: LI
 Schema

Ls3: G+
 Schema

conforms to

Lss‘: OWL

Ls1‘: FB
T-Box

Ls2‘: LI
 T-Box

conforms to

Transformation (data model heterogeneity) 2

Ls1‘‘: Integrated
T-Box (e.g. FOAF)

Lss: JSON
Schema

Integration (structural and semantic heterogeneity) 3

Lx2: LI
Instance

Lx3: G+
Instance

Lx1‘: FB
A-Box

Lx2‘: LI
A-Box

Lx3‘: G+
A-Box

Lx‘‘: Integrated
A-Box

Lx1: FB
Instance

Ex
tr

ac
tio

n
(t

ec
hn

ic
al

 a
nd

sy

nt
ac

tic
 h

et
er

og
en

ei
ty

)

Ls3‘: G+
T-Box

 Existing tools (Example: Virtuoso Sponger cartridge for Google+)
Legend Graph API REST API G+ API 1

M2

M1

M0

Figure 1: Overview of heterogeneities during user profile integration

ifications between the source schema of the extracted
data and the desired target schema, in order to trans-
form instances. Often, such components mix the res-
olution of data model, structural, and semantic het-
erogeneities in a single transformation step, thereby
aggravating maintenance and modifications. Further-
more, in the face of new social networks arising fre-
quently and evolution of existing ones (i. e., changes
of schemas and apis), manual creation of schemas
and transformation specifications for all possible data
sources is not an adequate option, not least since
schemas may be extensive in size.

Existing automated transformation approaches,
for instance, by (Atzeni et al. 2005) or our previ-
ous work (Kapsammer et al. 2012), focus on resolv-
ing data model heterogeneity on the schema level.
They extract schemas in the source technical space
and transform them into schemas of the desired tar-
get technical space. Thus, in this paper, we com-
plement the above approaches with a model-driven
one, automating the configuration of instance data
transformation processes, with a focus on resolving
data model heterogeneity and a clear separation from
other tasks during integration and from the resolv-
ing of other kinds of heterogeneities. We assume,
that technical heterogeneities are already resolved, for
instance, by building appropriate adaptors employ-
ing social network apis (e. g., using http, OAuth,
etc.). For resolving structural and semantic hetero-
geneities later on, established integration techniques
may be utilized, which are supported by general pur-
pose modeling tools, such as Enterprise Architect7,
and by a multitude of dedicated integration tools,
such as coma++ (Massmann et al. 2011) for simi-
larity matching, or MapForce8 for mapping.

This model-driven approach is applied to instance
data transformation between json data from social
networks as source, and owl, as proposed by the
Linked Data Initiative (Heath & Bizer 2011), as
target schema. json was used due to its popularity
in social networks (also, existing approaches did not
consider it much yet). owl was chosen over rdf to
be extensible for integration mappings to consolidate
profiles. Exploiting the semantic features of owl,
generic instance transformation specifications may
be applied, which are independent of concrete social
network schemas and owl ontologies.

7www.enterprisearchitect.at
8www.altova.com/mapforce

Structure of the paper. In the next section, we
discuss related research, before in Section 3 and Sec-
tion 4 we present our approach and an implementa-
tion thereof using the Eclipse Modeling Framework.
In Section 5 we discuss results and lessons learned
from the application on actual user profiles from Face-
book, Google+, and LinkedIn. Finally, in Section 6
we give an outlook on integration of user profile data,
present prospects for handling evolution of sources
and the propagation of changes, and discuss the gen-
eralization of the approach for arbitrary source and
target technical spaces beside json and owl.

2 Related Work

In this section, we discuss closely related work with
respect to instance transformation between json and
owl for overcoming data model heterogeneity, ontol-
ogy engineering, as well as related approaches from
the data and model engineering domains.

Concerning the specific transformation of json
data into rdf graphs or owl ontologies, most closely
related work can be found in terms of so-called
rdfizers. Such rdfizers are available for a plethora
of different sources, ranging from specific websites
over social networks to relational databases and plain
files. rdfizers are implemented, for instance, as part
of Virtuoso (an enterprise data integration server),
Aperture for extracting and querying several informa-
tion systems in the Semantic Desktop project (Dengel
2007), in d2r and r2rml for publishing relational
databases to the Semantic Web (Bizer & Cyganiak
2006, Das et al. 2012), for transforming various mi-
croformats into rdf using, for instance, Triplr or
Any239, as well as for extracting information from
the Old rest api of Facebook (Rowe & Ciravegna
2008) and from Twitter (Mendes et al. 2010). All
these frameworks either must be configured manu-
ally with respect to data extraction, transformation
to rdf, and integration into common ontologies, or
simply utilize hard-coded rules for this purpose (spec-
ified manually). Also, these approaches often mix the
resolving of data model, structural, and semantic het-
erogeneities, incurring the disadvantages already dis-
cussed above. For example, in Virtuoso, so-called
cartridges are responsible for extracting data from
various sources, and for transforming them into rdf
graphs. These graphs utilize the vocabularies pro-

9developers.any23.org

CRPIT Volume 143 - Conceptual Modelling 2013

90

vided by various target ontologies, for instance, foaf
and a complementing Facebook ontology provided by
OpenLink, which captures the concepts of Facebook
not present in foaf. For this, Virtuoso requires the
target ontologies and xslt definitions of transforma-
tions to these target ontologies, which are often spec-
ified manually. Semion (Nuzzolese et al. 2010) goes
beyong such triplifiers by focusing on a customiz-
able triplification process. Keeping in mind that data
source schemas may frequently change, creating con-
figurations, hard-coded rules, and target ontologies
manually is a laborious and error-prone task. Our
approach, in contrast, separates overcoming different
kinds of heterogeneities into sequential transforma-
tion and integration steps, also aiming at automating
these steps.

Addressing the challenges of ontology engineering,
the application of model driven architectures for de-
velopment of Semantic Web ontologies has been pro-
posed by (Gašević et al. 2009). An in-depth dis-
cussion of meta-models in combination with ontolo-
gies for software engineering was done by (Henderson-
Sellers 2011), including extensive related work. The
method by (Cranefield & Pan 2007) employs Jena
rules to create rdf from mof-based models, whereas
(Gašević et al. 2007) use xslt to generate owl from
uml. The approach of (Glimm et al. 2010) uses owl2
for meta-modeling, specifying class constraints and
relationships as owl axioms, and synchronizing them
with individuals’ role assertions. Our approach com-
bines and generalizes these ontology engineering con-
cepts into a model-driven approach that may be con-
figured to arbitrary source and target technical spaces.

Concerning the individual steps in the transfor-
mation process, in particular with respect to schema
and instance transformation, in the data engineer-
ing domain a considerable amount of research has
been conducted. Existing generic approaches map
different schemas of the same technical space and ex-
change data between these schemas (e. g., cf. (Doan
& Halevy 2005, Fagin et al. 2009, Legler & Naumann
2007) for surveys on such approaches). More spe-
cific approaches (i) map between relational and xml
schemas and instances, cf. (Yahia et al. 2004), (ii)
map structured sources into rdf, such as (Knoblock
et al. 2012, Speiser & Harth 2010), (iii) transform xml
to json or xml to owl/rdf (Bohring & Auer 2005,
Cardoso & Bussler 2011, Kobeissy et al. 2007, Bischof
et al. 2011), and (iv) align the individuals of differ-
ent ontologies, such as (Noy 2004). To date, how-
ever, most approaches rely on manually created and
specifically tailored transformation specifications and
as a consequence, are vulnerable to evolution of source
and target schemas. The requirements mentioned
above (schema and metamodel evolution, platform-
independent transformations, etc.) that drove our
choice of a model-driven architecture pare of minor
importance in these references.

Being applicable also in presence of schema evo-
lution, especially interesting are the approach of
(Bohring & Auer 2005) and clio (Fagin et al. 2009,
Haas et al. 2005). These approaches generate trans-
formation code in the form of xslt, XQuery, and sql
queries (depending on the source and target technical
space) in order to overcome technical and syntactic,
data model, structural, and semantic heterogeneity
in a single step. The ideas of such transformation
code generation are the basis for the instance transfor-
mation step in our model-driven transformation ap-
proach for social network data integration, which, as
already noted above, separates overcoming different
kinds of heterogeneities into sequential steps.

Concerning schema and instance transformation

in the model engineering domain, the general idea
of bridging several modeling layers within one ap-
proach has been presented, for instance, in the well-
known work by (Atzeni et al. 2005). For bridging the
meta-model layer, a so-called supermodel has been
proposed allowing to transform schemas between dif-
ferent technical spaces, such as oo, or, er, uml, and
xsd. For actually transforming the corresponding in-
stances thereof, so-called down functions have been
realized (Atzeni et al. 2006), allowing to transform
meta-model translation rules down to instances. In
contrast, we exploit the inference capabilities of owl,
and thus, need not create instance transformations
from schema transformations.

3 Architectural Overview

An initial overview of required steps for resolving
all kinds of heterogeneities was shown in Fig. 1
above. In order to provide transformations indepen-
dently of input (e. g., json) and output formats (e. g.,
owl/xml), we propose a model-driven approach to
bridging data model heterogeneity. In the follow-
ing, the approach is detailed by means of a source
json document, as extracted from a social network,
and a target owl/xml document, including the cor-
responding transformation of schemas. The proposed
model-driven transformation process for resolving this
data model heterogeneity is depicted in Fig. 2, and
discussed in the following.

Meta-modeling layers and transformations.
Our approach anchors the transformations of schemas
and instances along the four meta-modeling layers of
mof (Object Management Group 2011). The bottom
layer (m0) describes actual instances (e. g., user pro-
file instance data from Facebook in json or in an owl
ontology A-Box). These instances conform to models
at the model layer (m1, e. g., the Facebook Graph
api’s schema and json in general, or its representa-
tion as Facebook T-Box). In turn, these models con-
form to so-called meta-models (m2, e. g., json Schema
as a language for defining the schemas of json doc-
uments or owl as language for defining ontologies in
the Semantic Web technology stack). Finally, meta-
models are described in terms of a meta-meta-model
(m3), such as Ecore10.

In this four-layer representation, transformations
for bridging technical spaces on a particular layer are
always specified on the superior layer: thus, transfor-
mations on the m1 layer (e. g., from Facebook schema
to a Facebook T-Box) are specified on the m2 layer,
and transformations on the m0 layer (e. g., from Face-
book instances to individuals in a Facebook A-Box)
are specified on the m1 layer, as depicted in Fig. 2.

Schema and instance transformation. For
automatically transforming schemas, a transforma-
tion tss : Lm2 → Lm2′ has to be specified, for in-
stance, from json Schema to owl T-Box axioms,
which allows to transform the corresponding schemas.
For instance, a Facebook schema may be transformed
to an according T-Box by executing the transforma-
tion specification, i. e., Lm1s′ = tss(Lm1s).

For actual instance data, existing approaches re-
quire specific instance transformation specifications
tsis : Lm1s → Lm1s′ between pairs of source Lm1s and
target Lm1s′ models. Thus, to automatically trans-
form Facebook instance data into Facebook A-Box
axioms, a transformation specification between the
Facebook Schema and the Facebook T-Box would be
required, and for transforming data from LinkedIn

10Ecore is the realization of mof in the Eclipse Modeling Frame-
work (emf) www.eclipse.org/modeling/emf

Proceedings of the Ninth Asia-Pacific Conference on Conceptual Modelling (APCCM 2013), Adelaide, Australia

91

Lm3 (e.g., Ecore)

Lm1s
(e.g. FB Schema)

Lm2‘
(e.g.,OWL T-Box)

Lm2
(e.g., JSON Schema)

Lm1s‘
(e.g. FB T-Box)

Schema
Transformation

Specification (tss)

Conceptual

Lm0
(e.g. FB Instance)

Lm1

execute

<Onto>
<Decl>
<Class
IRI="#...

merge

Lm1g
(e.g. JSON)

Lm1g‘
(e.g. OWL A-Box)

Generic Instance
Transformation

Specification (tsig)

<Onto>
<ClassAss
ertion><
Class …

FB A-Box OWL/XML

se
ria

liz
e

<Onto>
<Decl>
<Class
IRI="#...

FB T-Box
OWL/XML

se
ria

liz
e

{"id":
“3485“,
"name":
"Rich…

FB JSON Instance

{"type":
"object",
"id":
"user",

FB JSON
Schema de

se
ria

liz
e

execute

de
se

ria
liz

e

Lm0‘
(e.g. FB A-Box)

conforms
to

M3

M2

M1

M0
FB Ont.

OWL/XML

JSON
Schema

OWL

merge

Figure 2: Overview of the model driven transformation process

and Google+, another two specifications would be
needed. We argue, that instead of multiple specific in-
stance transformation specifications tsis, generic ones
tsig : Lm1g → Lm1g′ can be defined, if the source
instances carry certain partial schema information
when being interpreted in terms of a generic source
language Lm1g, and the target language Lm1g′ sup-
ports dl and rule inference. Markup languages, such
as json and xml, used in today’s online social net-
work apis, and owl satisfy this requirement.

In the next section, we discuss our transformation
approach for resolving data model heterogeneity be-
tween json Schema and owl T-Box axioms on the
model layer (m1), as well as between json and owl
A-Box axioms on the instance layer (m0). This trans-
formation approach makes use of owl inference ca-
pabilities to enable the specification of schema trans-
formations on the meta-model layer, as well as in-
stance transformations on the model layer, which re-
place manually created transformation specifications
for each kind of data source.

4 JSON to OWL Transformation

In principle, our approach as depicted in Fig. 2
comprises two steps on the four-layer meta-modeling
stack, transforming (i) json Schema to owl T-Box
axioms, and (ii) json instances to owl A-Box axioms.
Both these steps can be realized using model trans-
formation techniques. The execution of a schema
transformation specification, first, processes a source
model (e. g., a Facebook schema deserialized from its
textual representation) to create a corresponding tar-
get model (e. g., a Facebook T-Box, serializable into
a textual representation). Second, when executed,
a generic instance transformation specification (i. e.,
independent of Facebook Schema and T-Box) pro-
cesses source instances (e. g., Facebook instances de-
serialized from json responses of Facebook) to create
the target instances (e. g., a Facebook A-Box), which
are serialized into a textual representation, such as
owl/xml. Finally, the result of the schema transfor-
mation execution is merged with the instance trans-
formation execution result into a coherent Facebook

ontology. The specifics of json and owl, which are
exploited in these generic transformations, are de-
tailed below. The actual transformation specifica-
tions are given in Sect. 4.2.

4.1 JSON to OWL by Example

Let us consider user information from a social network
(e. g., Facebook) extracted in json, as depicted in
Fig. 3. This snippet, which is rather simple for the
sake of understandability, shows a json object with
a single property name, whose value is ‘Jane Doe’.
The json object conforms to a simplified Facebook
schema, defining that every User is of type object
and comprises a property name.

Transformation of JSON Schema to OWL
T-Box. In order to provide the Facebook schema in
a T-Box (e. g., to support querying and reasoning), in
a first transformation step, the schema is transformed
into corresponding owl T-Box axioms. These axioms
define that User is equivalent with the class of things
that have a name property of type String (in owl,
this may be specified by the domain and range of a
data property).

Transformation of JSON to OWL A-Box.
In a second transformation step, the Facebook in-
stance is transformed into corresponding owl A-Box
axioms, which again are specified in dl notation. As
basic schema information, the format of the name
property’s value in our sample json snippet allows
us to derive the property’s type: json distinguishes
between string, number, boolean, object, and array.
Further schema information, such as the concrete
type of object (e. g., a person vs. an address), is
not available in the instances. Anyhow, this is where
owl, implementing the family SROIQ of description
logic (Grau et al. 2008), is a perfect fit on the tar-
get side: description logic reasoners are specifically
designed to classify objects according to their role
assertions, and hence, are able to infer the schema
information that is not explicitly present in json in-
stances (e. g., given a sample T-Box axiom specified
in description logic notation User ≡ ∃name.String,
a description logic reasoner infers that anything with

CRPIT Volume 143 - Conceptual Modelling 2013

92

{

"type": "object",

"id": "User",

"properties": {

"name": {"type": "string"}

}

} facebook_schema.schema

conforms to

facebook_t-box.owl

Thing(a).

name(a, "Jane Doe").

facebook_a-box.owl

transformed to

merged with

Facebook knowledge base

User(a).

String("Jane Doe").

asserted

asserted

inferred
inference

transformed to
{

"name": "Jane Doe"

} facebook_instance.json

Figure 3: Sample JSON to OWL transformation

at least one name is a user). Solutions to cope with
potential ambiguities will be discussed in Section 4.4
below. As a result, the instance transformation spec-
ifications do not necessarily need information from a
concrete model (e. g., a Facebook schema) for trans-
formation. Thus, all json objects can be transformed
into generic concept assertions of the kind Thing(a)
(instead of specific ones, such as User(a)). In a
similar manner, every value of a primitive property
(e. g., ‘Jane Doe’) can be transformed into a con-
cept assertion of the kind Literal. Finally, the
connections between objects and the values of their
primitive and complex properties (e. g., the fact that
our sample user has the name ‘Jane Doe’) have to
be transformed into role assertions (e. g., name(a,
‘Jane Doe’)). In case that a primitive or complex
property allows an array of values, every array ele-
ment must be represented with a corresponding role
assertion.

Merging of OWL T-Box and A-Box. When
being merged with the T-Box axioms, a description
logic reasoner, such as HermiT11, infers concept asser-
tions, as explained above. As a result, we can specify
all instance transformations tsig : Lm1g → Lm1g′ be-
tween json as source model and owl A-Box axioms
as target model in a generic manner. The specifica-
tions for both, generic schema and instance transfor-
mation, are detailed below.

4.2 Transformation Specifications

For specifying the actual schema and instance trans-
formations, one may resort to existing (model) trans-
formation languages, such as atl (Jouault et al.
2008), qvt (Object Management Group 2009), or
xslt. Since existing tools for publishing social net-
work data in rdf format use various transformation
languages, we utilize our Mapping Operator language
(MOps) (Wimmer et al. 2010b), which is designed as
a suitable basis for creating transformation specifica-
tions in different kinds of transformation languages.
Also, in our prototype, we use an executable imple-
mentation of MOps to perform the actual transfor-
mation. The basic building blocks of the MOps lan-
guage for specifying transformations are so-called ker-
nel MOps, which are composed to reusable higher-
level transformations, denoted as composite MOps.
Kernel MOps, their interplay, as well as the composi-
tion to composite MOps are explained below, as part
of their application to schema and instance transfor-
mation specification. For a detailed description of
kernel and composite MOps we refer to (Wimmer et
al. 2010a,b).

11hermit-reasoner.com

Schema transformation specification. The
specification of schema transformations from json
Schema to owl T-Box using MOps is depicted in
Fig. 4. Each MOp has input ports for accepting input
on the left side and output ports for producing target
objects on the right side. Ports are typed to classes
(C) or attributes (A).

The json Schema meta-model is a subset of the
json Schema Internet Draft12, which was selected for
ease of presentation in a straightforward manner. For
the owl T-Box meta-model, we based on omg’s On-
tology Definition Metamodel13. Note, that for pre-
sentation purposes, the owl T-Box meta-model was
simplified, i. e., axioms for domain and range of prop-
erties are modeled as relationships (instead of sub-
classes of Axiom).

In principle, every source element (Schema and
Property) results in a target Declaration, as in-
dicated by two Copier MOps in Fig. 4. The kind
of declared entity depends on the type of the trans-
formed source Schema: (i) complex schemas (type
has value “object” or “array”) can best be repre-
sented as instances of Class in owl, while (ii) primi-
tive schemas naturally become instances of Datatype.
Since the topmost complex schema must be addition-
ally transformed into an instance of Ontology (every
owl ontology is represented with one such instance),
a composite MOp in terms of a horizontal partitioner
is used. Such an HPartitioner comprises several
CondCopiers, which restrict the output of a Copier
to a subset satisfying a certain condition—in our case
an ontology is only output for the topmost schema,
and classes are only output for those schemas with
type “array” or “object”. For transforming primitive
schemas (i. e., simple types), we create an instance of
Datatype for each distinct value of the type property
in the source model (i. e., one datatype for “string”,
one for “boolean”, and another one for “number”).
Hence, the composite MOp ObjGenerator is used,
which is depicted in white-box view, exposing the
comprised kernel MOps. It includes (i) an A2C ker-
nel MOp (transforms the value of an attribute of the
source meta-model into a class instance of the target
meta-model) for creating the instance of Datatype,
and (ii) an A2A kernel MOp (copies an attribute value
into another attribute value) for setting the iri (In-
ternationalized Resource Identifier) of the newly cre-
ated datatype. Since there are dependencies between
these kernel MOps (i. e., the iri can only be set af-
ter the datatype has been created), the A2C MOp is
additionally linked to the A2A MOp through a trace
port (T), which provides context information about

12tools.ietf.org/html/draft-zyp-json-schema-03
13www.omg.org/spec/ODM/1.0

Proceedings of the Ninth Asia-Pacific Conference on Conceptual Modelling (APCCM 2013), Adelaide, Australia

93

Schema

JSON Schema Metamodel OWL T-Box Metamodel

description:String
id:String
type:String

properties

0..*

Property

propertyName:String

type

items

0..*

Ontology

axioms 0..*

Class

Datatype

DataProperty

Mapping

JSON Schema -> OWL T-Box

{xor}

DataProperty

Domain
DataProperty

Range

ObjectProperty

Range

ObjectProperty

Domain

Axiom

Entity

iri:String

range
domain

domain

range

entity 1

1

1

1

1 C C

C

C C

C

C C

C
A

T

2 A C

C

A
A 2 A A

C C

C C

Declaration

ObjectProperty

Figure 4: Transformation of JSON Schema to OWL T-Box using MOps

the produced output objects. Finally, instances of
Property must either be transformed to instances
of ObjectProperty (in case they reference a com-
plex schema) or to DataProperty (in all other cases).
Analogously to transforming instances of Schema, an
HPartitioner can be used for that.

Instance transformation specification. Fig. 5
summarizes the instance transformations between
json and owl. The meta-models were built on basis
of the same specifications as those for schema trans-
formation.

As already discussed in the transformation exam-
ple above, json objects are transformed in a straight-
forward manner to owl individuals of unspecified
type (i. e., Things). Hence, one Copier creates an
Individual for each Object, while another one cre-
ates a ClassAssertion referring to the entity Thing.
Node identifiers (iri) are generated, if present, from
nested key properties (“id”, “key”), or, otherwise,
from the filename (for root objects) or employing
a simple heuristic, which uses the hash value of
all nested members. Thereby, same objects can be
matched (i. e., get equal identifiers), as long as they
do not contain another layer of nested objects. In
that case, distinct iris are generated.

Analogously to the schema transformation speci-
fication, on the instance level we distinguish between
members of complex and of primitive type. Con-
sequently, we utilize an HPartitioner to create an
ObjectPropertyAssertion for members with com-
plex values and a DataPropertyAssertion for mem-
bers with primitive values. These assertions must ref-
erence the corresponding entities that were created
during schema transformation (e. g., a “firstName”
member must be transformed into an assertion of
the corresponding “firstName” data property14). An-
other Copier, again depicted in white-box view, cre-
ates new Entity instances from Member instances (the
name of the member serves as the entity’s iri). During
merging of T-Box and A-Box, iri equivalence ensures
that the A-Box entities can be connected to their
counterparts in the T-Box. Finally, every primitive
value (Boolean, Number, and String) must be copied
to an instance of Literal, but only if it was not cre-

14Keeping in mind our focus on resolving data model hetero-
geneity, both the source and target technical space have the same
structure, and, thus, we can safely assume name equivalence be-
tween json members and owl properties.

ated before (hence, the HMerger contains in fact three
CondCopiers).

4.3 Implementation in EMF

As implementation platform, we chose the Eclipse
Modeling Framework (emf), including Xtext and
Xtend for text (de-)serialization and transformation,
due to its maturity and large community support. For
implementing MOps and transformations in Xtend,
meta-models in Ecore are required. The meta-models
for json, json Schema, and owl were generated from
Xtext grammars according to the specifications intro-
duced above. These Ecore meta-models are automat-
ically translated by emf into Java classes, which can
then be used in Xtend. To switch to a different source
technical space — in the past Facebook and the Twit-
ter streaming API switched from xml to json — our
implementation would only require Xtext grammars
to generate the new meta-models for de-serialization
to Ecore.

In order to utilize existing ontology tools and de-
scription logic reasoners, the Ecore representations of
T-Box and A-Box resulting from applying the Xtend
implementation of our MOps, then, must be serialized
(e. g., as rdf/xml or owl/xml) and merged. Again,
Xtend is used for this purpose. For increased compat-
ibility we implemented serializers for both, owl/xml,
e. g., for loading in Protégé15, and rdf/xml, as re-
quired for Apache Jena16.

4.4 Type Inference & Reasoning

Loading the generated files in Protégé enables the ap-
plication of the included HermiT reasoner for type
inference. Generic instance transformation specifi-
cations not taking into account schema information,
however, may result in ambiguities during classifica-
tion by a description logic reasoner. First, classes
having the same mandatory, but different optional
properties, cannot be matched unambiguously, in case
that an object thereof is described in terms of the
mandatory properties, only. Second, equally named
and typed properties with different constraints in
two different classes cannot be distinguished (e. g., a

15protege.stanford.edu, used version: 4.2 beta (build 276)
16jena.apache.org, used version: 2.7.0

CRPIT Volume 143 - Conceptual Modelling 2013

94

JSON Metamodel OWL A-Box Metamodel

Member

name:String

0..*
values

1
1

value

Ontology

axioms

0..*

Assertion

DataProperty

Assertion

ObjectProperty

Assertion

Mapping

JSON -> OWL A-Box

Array

Boolean

value:boolean

Value

Number

value:number

String

value:String

Object

JSON

1

{xor}

0..*

members

Literal

lexicalValue:String

Class

Assertion

Axiom

Entity

iri:String

Individual

iri:String

individual

class

object
Property target

source

target

source data
Property

1 1 1

1

1

1

1

1

C C

C C

C

C C

C C

C
C

C

C

C
C

T

2 C C

C

A
A 2 A A

C C

Figure 5: Transformation of JSON to OWL A-Box using MOps

class AustrianAddress with a 4-digit zip code vs. a
GermanAddress with 5 digits).

To alleviate this problem, we propose to encode
additional meta information from instance data in
an owl T-Box — in a similar manner as previ-
ously shown for schema extraction (Kapsammer et
al. 2012). For example, the property category of
Facebook pages (a key concept in Facebook data,
used universally) may be used to define equiva-
lences with specific classes: Restaurant ≡ Page u
∃category.{restaurant}. Previously (Kapsammer et
al. 2012), various heuristics for tackling this problem
have been proposed: for example, IdFromValue in-
fers a class name from property values (e. g., “type”
or “category” in Facebook, and property “kind” in
Google+), while IdFromReferenceName infers a class
name from the names of references to nested individu-
als (e. g., used in LinkedIn). These different heuristics
can be exploited during instance transformation as
well. Therefore, each heuristic is encoded as a generic
declarative Jena rule with accompanying built-ins for
imperative computations. For instance, regarding
connections in Facebook, the api’s json response, if
requested, contains an object metainfo, containing
an array connections, which in turn contains mul-
tiple properties, having uris as values. These are
links for other requests to receive further data, but
they would actually resemble a connection between
the response’s root object, and the root object of
another json object (e. g., a list of friends). This
LinkPatternFromValue strategy can be expressed as
a Jena rule, thereby providing a direct edge between
such objects (resulting in one edge per connection,
instead of two intermediate nodes and three edges).
As an alternative to built-ins, such definitions can be
automatically generated by our previously proposed
schema extraction process (Kapsammer et al. 2012)
in terms of T-Box axioms, or as reasoning rules for se-
mantic web rule reasoners (e. g., Jena inference rules).

5 Results & Evaluation

In this section, we evaluate our prototypical imple-
mentation by means of transforming data from Face-

book, Google+, and LinkedIn to corresponding owl
ontologies. Thereby, we will discuss several aspects:
completeness, consistency, conciseness, as well as per-
formance and scalability.

Evaluation Setup. In order to obtain compa-
rable results, equal test user profiles were created in
each of the selected social networks and extracted via
their api. These profiles contain basic user informa-
tion, jobs, education, as well as a connected friend
for direct communication and interaction within a
group. Note, that these data sets, since they were
created manually, do not reflect the complete informa-
tion available in real social network profiles. Nonethe-
less, as they were created in a consistent manner,
they are suited for a first evaluation. (cf. (Kap-
sammer et al. 2012) for details on user profiles and
generated schemas). The input data sets from Face-
book, Google+, and LinkedIn as json files, as well as
a simple introductory example, are available online17.
Furthermore, the files include generated json Schema
files, as explained by (Kapsammer et al. 2012), T-Box
and A-Box in Ecore format, the merged serialization
thereof (in rdf/xml & owl/xml), as well as (for
the three social networks) Jena rules and reasoning
results.

Completeness. The completeness of the ex-
tracted data from social network apis was already
discussed previously (Kapsammer et al. 2012). The
requirement of all information from the json input
to be present in the output is fulfilled by the pro-
posed transformation approach: all json objects, ar-
rays, and simple types are transformed to owl (i. e.,
all input is present in output). This was evaluated by
manually comparing the input to the generated in-
stances, object properties, and datatype properties,
on multiple samples from all four data sets.

Consistency. To evaluate the consistency of the
transformations, we compared the outputs of multi-
ple runs on the same input data. First, the more or
less random serialization order of assertions is not a
problem, since Protégé shows classes and individuals
in alphabetical order anyway. Second, as discussed

17social-nexus.net/publications

Proceedings of the Ninth Asia-Pacific Conference on Conceptual Modelling (APCCM 2013), Adelaide, Australia

95

Table 1: Description of input, output, and execution times—including count of files and individuals, file sizes
(plain/zip-compressed), generated ids and id mismatches, as well as average execution times for transformations
and reasoning.

Input Simple Ex. Facebook Google+ LinkedIn
Number of input instance files (JSON) 1 192 11 21
Size of input files (JSON Schema + JSON) plain/compressed 1/1 kB 399/128 kB 31/12 kB 41 (14) kB
Output Simple Ex. Facebook Google+ LinkedIn
Number of individuals (in A-Box) 4 1549 104 260
Size of output files (T-Box, A-Box & inferred triples in RDF/XML) 13/2 kB 626/63 kB 58/6 kB 113/9 kB
Number of individuals without unique ID from JSON input 2 1078 64 187
Mismatches of generated IRI for objects with equal content 0 53 4 25
Transformation & Reasoning Time Simple Ex. Facebook Google+ LinkedIn
Sum of transformation & reasoning time 196 ms 8621 ms 2198 ms 3186 ms
JSON Schema to OWL T-Box Ecore 45 ms 107 ms 64 ms 67 ms
JSON to OWL A-Box Ecore 62 ms 2541 ms 282 ms 559 ms
OWL Ecore to RDF/XML & OWL/XML 90 ms 2322 ms 397 ms 774 ms
Jena Rule Reasoning on RDF/XML - 3651 ms 1455 ms 1785 ms

earlier, for individuals without a unique id from the
json input, an identifier has to be generated. These
generated iris may differ between runs, but are al-
ways consistent within a generated ontology. In this
context, Table 1 also counts mismatches of generated
iris for objects with equal content (i. e., the heuris-
tic fails, if json objects contain nested objects, as
discussed in Sect. 4.2).

Conciseness. Comparing the file size for json
input and owl output, Table 1 shows that plain
rdf/xml files are larger than the json counter-
parts. Zip-compression, however, works much more
efficiently for the rdf/xml format.

Regarding the conciseness of transformed output
itself, we compare the generated serialization to the
minimal representation of the same facts. Such a min-
imal owl A-Box would contain one assertion for each
individual, datatype property, and object property.
In this sense, the generated rdf/xml is not mini-
mal, as we assert all individuals as Things, and the
reasoner adds inferred assertions with more specific
types. For properties, however, the transformation
is minimal. Concerning the json tree structure, in
which data is provided by social network apis, the
length of paths is crucial for navigation. Our im-
plementation converts these trees, being in fact a
special case of graphs, to tree-like ontology graphs,
which then allow the introduction of shortcuts (e. g.,
for Facebook connections, as discussed in Sect. 4.4).
On one hand, these shortcuts represent additional as-
sertions, but, on the other hand, materializing these
shortcuts enable faster queries that are also easier to
express.

Performance & Scalability. To evaluate the
time complexity of our approach, we measured the
execution times18 for the different data sets in our
prototype, as shown in Table 1. From these measure-
ments we can observe that the size of the json Schema
correlates with its transformation time to Ecore. The
same applies for the transformation of json instances
to Ecore. Concerning the Jena inference step, clearly
the reasoning takes most of the time in the overall
process, with the benefit of being able to infer infor-
mation that is not present in the source data explic-
itly. Note, that the times in the above table include
file I/O. In a separate run without those json files
from the Facebook input, which contain almost no

18average of at least 5 runs, on a notebook PC (Intel i7-Q740, 8
GB RAM, running Windows 7 64-bit)

members (i. e., empty objects and arrays), the trans-
formation of instances to Ecore was sped up by 37%,
with remaining 92% of individuals within one third of
files. Thus, to make the transformation more efficient,
all steps may be integrated into a single application
with reduced file system access for input and interme-
diate files. Concerning scalability, the average trans-
formation times for larger inputs grow, from a certain
point, linearly (transformation & serialzation), and
exponentially for the reasoning step. However, using
specific rules that do not require imperative compu-
tations (cf. Sect. 4.4), the magnitude would probably
be reduced. On average, for 62.000 individuals plus
properties, the transformation to Ecore took 37 sec-
onds, the Jena inferencing took 184 seconds.

Finally, memory complexity was measured in
terms of ram consumption. Whereas for transforma-
tion of these 62.000 individuals plus properties the
Java process consumed 1025 mb, growing linearly, for
the reasoning it peaked at 335 mb, almost constantly
(i. e., almost no growth).

6 Conclusion and Future Work

We presented an approach for model driven trans-
formation of schemas and instances between differ-
ent technical spaces. Our method requires the trans-
formation specification to be done only once, for in-
stance, from json Schema to owl T-Box axioms.
This specification can then be executed for different
data sources, such as different social networks provid-
ing json data via their apis. Neglecting semantics,
json’s tree-like structure can be transformed to owl
in a straightforward manner (e.g., json slots of simple
datatype as datatype properties, complex types and
arrays as object properties). To go beyond syntactic
equivalence, and to consider semantics of apis, some
configuration was required, which obviously depends
on the data source. For instance, semantic equiva-
lence from json slots is not generally possible, but
in Facebook id slots can be used to define semantic
equivalence.

In the evaluation section we applied our approach
to comparable user profiles from Facebook, Google+,
and LinkedIn. Not surprisingly, time and memory
complexity were relatively high (especially for reason-
ing and for larger user profiles), but clearly there is
potential for optimizations, and an evaluation on ex-
tensive data sets would be interesting for future work.

CRPIT Volume 143 - Conceptual Modelling 2013

96

Our focus was on the pre-requisite steps for data
integration and consolidation from different social
networks: the goal was to overcome data model het-
erogeneity, in order to facilitate structural and se-
mantic integration later on. In contrast to related
transformation approaches, using model driven archi-
tectures allows to build graphical editors and to cope
with evolution, for instance when apis change. Also,
they enable source/target formats exchange with-
out influencing transformation rules, and platform-
independent MOps allow replacing the transforma-
tion platform.

Generalization to arbitrary source and tar-
get models. For generalizing the presented approach
to technical spaces other than json as source and
owl as target, several modifications need to be taken
into account. Without the reasoning capabilities of
owl and Jena rules, instances need to be loaded
according to their concrete source schema (instead
of some generic meta-model), therefore, preventing
generic instance transformations that are indepen-
dent of source models. As a consequence, firstly, ded-
icated (de-)serializers for every single source and tar-
get schema are required, and, secondly, the generic in-
stance transformation specification (specified on the
model layer) must be replaced with specific ones
for each social network schema. In order to auto-
mate this whole process, the deserializers for source
schemas should be generated automatically. Further-
more, the instance transformation specifications on
the model layer are foreseen to be created automat-
ically as artifacts as well—just like the target model
classes are generated—during the execution of the
transformation from source to target model (speci-
fied on the meta-model layer). This means, a sole
transformation specification on the meta-model layer
may result in potentially many transformation spec-
ifications on the model layer. However, as a result
of the limitations of current model engineering soft-
ware frameworks (specifically, the fact that Eclipse
modeling spans three of the four meta-modeling lay-
ers, only), the models created during schema transfor-
mation must be lifted to the meta-model layer first.
This means, that instances in the schema transforma-
tion specifications must become models in the instance
transformation specification.

Semantic integration of schemas. Having re-
solved data model heterogeneity between different
social networks by transformation to owl, instance
based schema matching tools, such as coma++
(Massmann et al. 2011), may be used to support
humans in defining semantic correspondences. Such
tool support is especially helpful for large or unknown
schemas. However, unlike transformations for resolv-
ing technical heterogeneity, which were shown in this
paper to be specifiable in a generic manner, transfor-
mations resolving semantic heterogeneity still need
manual intervention. Therefore, we can resort to
Semantic Web technologies to integrate the trans-
formed user models in owl/xml, for instance, by
defining equivalences between the owl classes User
from Facebook and Person from foaf. Again, em-
ploying reasoners allows to retrieve instances mate-
rialized as Facebook A-Box from queries using the
foaf vocabulary.

Source Schema Evolution. Once such map-
pings are specified, an especially interesting question
therefore is, how to automate or support evolution
of these transformations. A first idea in this direc-
tion is the design of a meta-model of possible schema
changes in emf, including generic operations to prop-
agate changes to dependent artifacts, such as queries
and integration rules.

References

Abel, F., Araújo, S., Gao, Q. & Houben, G. J. (2011),
Analyzing cross-system user modeling on the social
web, in ‘Proc. of the 11th int. conf. on Web engi-
neering’, ICWE’11, Springer, pp. 28–43.

Aroyo, L. & Houben, G.-J. (2010), ‘User model-
ing and adaptive Semantic Web’, Semantic Web
1(1), 105–110.

Atzeni, P., Cappellari, P. & Bernstein, P. A. (2005),
ModelGen: Model Independent Schema Transla-
tion, in ‘Proc. of the 21st Int. Conf. on Data
Engineering’, ICDE ’05, IEEE Computer Society,
pp. 1111–1112.

Atzeni, P., Cappellari, P. & Bernstein, P. A. (2006),
Model-Independent Schema and Data Translation
Advances in Database Technology - EDBT 2006,
Vol. 3896 of LNCS, Springer, pp. 368–385.

Bischof, S., Decker, S., Krennwallner, T., Lopes, N.
& Polleres, A. (2011), Mapping between RDF and
XML with XSPARQL, Technical report, DERI.

Bizer, C. & Cyganiak, R. (2006), D2R Server – Pub-
lishing Relational Databases on the Semantic Web,
in ‘Proceedings of the 5th International Semantic
Web Conference’.

Bleiholder, J. & Naumann, F. (2009), ‘Data Fusion’,
ACM Comput. Surv. 41(1), 1–41.

Bohring, H. & Auer, S. (2005), Mapping XML to
OWL Ontologies, in K. P. Jantke, K.-P. Fähnrich
& W. S. Wittig, eds, ‘Leipziger Informatik-Tage’,
Vol. 72 of LNI, GI, pp. 147–156.

Bozzon, A., Brambilla, M. & Ceri, S. (2012), Answer-
ing search queries with CrowdSearcher, in ‘Pro-
ceedings of the 21st international conference on
World Wide Web’, WWW ’12, ACM, New York,
NY, USA, pp. 1009–1018.

Cardoso, J. & Bussler, C. (2011), ‘Mapping between
heterogeneous XML and OWL transaction repre-
sentations in B2B integration’, Data & Knowledge
Engineering 70(12), 1046–1069.

Cranefield, S. & Pan, J. (2007), ‘Bridging the gap
between the model-driven architecture and on-
tology engineering’, Int. J. Hum.-Comput. Stud.
65(7), 595–609.

Das, S., Sundara, S. & Cyganiak, R. (2012), ‘R2RML:
RDB to RDF Mapping Language’, W3C Working
Draft, http://www.w3.org/TR/r2rml/.

Dengel, A. R. (2007), Knowledge Technologies for the
Social Semantic Desktop, Vol. 4798 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg,
Berlin, Heidelberg, chapter 2, pp. 2–9.

Doan, A. & Halevy, A. Y. (2005), ‘Semantic-
integration research in the database community’,
AI Mag. 26(1), 83–94.

Fagin, R., Haas, L. M., Hernández, M., Miller, R. J.,
Popa, L. & Velegrakis, Y. (2009), Conceptual Mod-
eling: Foundations and Applications, Springer-
Verlag, Berlin, Heidelberg, chapter Clio: Schema
Mapping Creation and Data Exchange, pp. 198–
236.

Gašević, D., Djurić, D. & Devedžić, V. (2007), ‘MDA-
based Automatic OWL Ontology Development’,
Int. J. Softw. Tools Technol. Transf. 9(2), 103–117.

Proceedings of the Ninth Asia-Pacific Conference on Conceptual Modelling (APCCM 2013), Adelaide, Australia

97

Gašević, D., Djurić, D. & Devedžić, V. (2009), Model
Driven Engineering and Ontology Development,
2nd edn, Springer Publishing Company, Incorpo-
rated.

Glimm, B., Rudolph, S. & Völker, J. (2010), Inte-
grated metamodeling and diagnosis in OWL 2, in
‘Proceedings of the 9th international semantic web
conference on The semantic web - Volume Part
I’, ISWC’10, Springer-Verlag, Berlin, Heidelberg,
pp. 257–272.

Grau, B. C., Horrocks, I., Motik, B., Parsia, B.,
Patel-Schneider, P. & Sattler, U. (2008), ‘OWL
2: The next step for OWL’, Web Semantics: Sci-
ence, Services and Agents on the World Wide Web
6(4), 309–322.

Haas, L. M., Hernández, M. A., Ho, H., Popa, L.
& Roth, M. (2005), Clio grows up: from research
prototype to industrial tool, in ‘Proceedings of the
2005 ACM SIGMOD international conference on
Management of data’, SIGMOD ’05, ACM, New
York, NY, USA, pp. 805–810.

Heath, T. & Bizer, C. (2011), Linked Data: Evolving
the Web into a Global Data Space, Vol. 1, Morgan
& Claypool Publishers.

Henderson-Sellers, B. (2011), ‘Bridging metamodels
and ontologies in software engineering’, J. Syst.
Softw. 84(2), 301–313.

Jouault, F., Allilaire, F., Bézivin, J. & Kurtev, I.
(2008), ‘ATL: A model transformation tool’, Sci-
ence of Computer Programming 72(1-2), 31–39.

Kapsammer, E., Kusel, A., Lechner, S., Mitsch,
S., Pröll, B., Retschitzegger, W., Schönböck, J.,
Schwinger, W., Wimmer, M. & Wischenbart, M.
(2012), User Profile Integration Made Easy -
Model-Driven Extraction and Transformation of
Social Network Schemas, in ‘International Work-
shop on Interoperability of User Profiles in Multi-
Application Web Environments (MultiA-Pro) at
WWW 2012’, ACM.

Kim, W., Jeong, O.-R. & Lee, S.-W. (2010), ‘On so-
cial Web sites’, Information Systems 35(2), 215–
236.

Knoblock, C. A., Szekely, P. A., Ambite, J. L., Goel,
A., Gupta, S., Lerman, K., Muslea, M., Taheriyan,
M. & Mallick, P. (2012), Semi-automatically Map-
ping Structured Sources into the Semantic Web,
in E. Simperl, P. Cimiano, A. Polleres, O. Corcho
& V. Presutti, eds, ‘ESWC’, Vol. 7295 of Lecture
Notes in Computer Science, Springer, pp. 375–390.

Kobeissy, N., Girod Genet, M. & Zeghlache, D.
(2007), Mapping XML to OWL for seamless infor-
mation retrieval in context-aware environments, in
‘IEEE International Conference on Pervasive Ser-
vices’, IEEE, pp. 361–366.

Legler, F. & Naumann, F. (2007), ‘A Classifica-
tion of Schema Mappings and Analysis of Map-
ping Tools’, Proceedings of Datenbanksysteme in
Business, Technologie und Web (BTW 2007) (Ger-
many, Aachen, March 7-9).

Massmann, S., Raunich, S., Aumüller, D., Arnold, P.
& Rahm, E. (2011), Evolution of the COMA Match
System, in ‘The Sixth International Workshop on
Ontology Matching’.

Mendes, P. N., Passant, A. & Kapanipathi, P. (2010),
Twarql: tapping into the wisdom of the crowd, in
‘Proceedings of the 6th International Conference on
Semantic Systems’, I-SEMANTICS ’10, ACM, New
York, NY, USA.

Noy, N. F. (2004), ‘Semantic integration: a sur-
vey of ontology-based approaches’, SIGMOD Rec.
33(4), 65–70.

Nuzzolese, A. G., Gangemi, A., Presutti, V. &
Ciancarini, P. (2010), ‘Fine-tuning triplification
with Semion’, EKAW workshop on Knowledge
Injection into and Extraction from Linked Data
(KIELD2010).

Object Management Group (2009),
‘Meta object facility (MOF) 2
query/view/transformation specification’,
www.omg.org/spec/QVT/1.1/Beta2/PDF/.

Object Management Group (2011), ‘Meta ob-
ject facility (MOF) 2 core specification’,
www.omg.org/spec/MOF/2.4.1/PDF.

Parundekar, R., Knoblock, C. A. & Ambite, J. L.
(2010), Linking and Building Ontologies of Linked
Data, in ‘Proceedings of the 9th international se-
mantic web conference on The semantic web - Vol-
ume Part I’, ISWC’10, Springer-Verlag, Berlin, Hei-
delberg, pp. 598–614.

Razmerita, L., Firantas, R. & Jusevičius, M. (2009),
Towards a New Generation of Social Networks:
Merging Social Web with Semantic Web, in ‘5th
International Conference on Semantic Systems (I-
Semantics 2009)’.

Rowe, M. & Ciravegna, F. (2008), Getting to Me - Ex-
porting Semantic Social Network Information from
Facebook, in ‘1st Social Data on the Web workshop
(SDoW2008)’.

Speiser, S. & Harth, A. (2010), Taking the LIDS off
data silos, in ‘Proceedings of the 6th International
Conference on Semantic Systems’, I-SEMANTICS
’10, ACM, New York, NY, USA.

Viviani, M., Bennani, N. & Egyed-Zsigmond, E.
(2010), A Survey on User Modeling in Multi-
Application Environments, in ‘Proceedings of the
3rd International Conference on Advances in
Human-Oriented and Personalized Mechanisms,
Technologies and Services’, IEEE, Nice, France,
pp. 111–116.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger,
W., Schönböck, J. & Schwinger, W. (2010a), Plug
& Play Model Transformations - A DSL for Resolv-
ing Structural Metamodel Heterogeneities, in ‘Pro-
ceedings of the 10th Workshop on Domain-Specific
Modeling (DSM’10) @ Splash 2010’.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger,
W., Schönböck, J. & Schwinger, W. (2010b), Sur-
viving the Heterogeneity Jungle with Composite
Mapping Operators, in ‘Proc. of the 3rd Int. Conf.
on Model Transformation’, Springer, pp. 260–275.

Yahia, S. A., Du, F. & Freire, J. (2004), A compre-
hensive solution to the XML-to-relational mapping
problem, in ‘Proceedings of the 6th annual ACM in-
ternational workshop on Web information and data
management’, WIDM ’04, ACM, New York, NY,
USA, pp. 31–38.

CRPIT Volume 143 - Conceptual Modelling 2013

98

